These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 26272730)

  • 1. Simultaneous control of error rates in fMRI data analysis.
    Kang H; Blume J; Ombao H; Badre D
    Neuroimage; 2015 Dec; 123():102-13. PubMed ID: 26272730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A likelihood ratio approach for functional localization in fMRI.
    Degryse J; Moerkerke B
    J Neurosci Methods; 2020 Jan; 330():108417. PubMed ID: 31628960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Likelihood-based hypothesis tests for brain activation detection from MRI data disturbed by colored noise: a simulation study.
    den Dekker AJ; Poot DH; Bos R; Sijbers J
    IEEE Trans Med Imaging; 2009 Feb; 28(2):287-96. PubMed ID: 19188115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cluster overlap measure for comparison of activations in fMRI studies.
    Cecchi GA; Garg R; Rao AR
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):1018-25. PubMed ID: 20426088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accounting for Non-Gaussian Sources of Spatial Correlation in Parametric Functional Magnetic Resonance Imaging Paradigms II: A Method to Obtain First-Level Analysis Residuals with Uniform and Gaussian Spatial Autocorrelation Function and Independent and Identically Distributed Time-Series.
    Gopinath K; Krishnamurthy V; Lacey S; Sathian K
    Brain Connect; 2018 Feb; 8(1):10-21. PubMed ID: 29161884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Event-related fMRI studies of false memory: An Activation Likelihood Estimation meta-analysis.
    Kurkela KA; Dennis NA
    Neuropsychologia; 2016 Jan; 81():149-167. PubMed ID: 26683385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thresholding of statistical maps in functional neuroimaging using the false discovery rate.
    Genovese CR; Lazar NA; Nichols T
    Neuroimage; 2002 Apr; 15(4):870-8. PubMed ID: 11906227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative evaluation of wavelet-based methods for hypothesis testing of brain activation maps.
    Fadili MJ; Bullmore ET
    Neuroimage; 2004 Nov; 23(3):1112-28. PubMed ID: 15528111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modified test statistics by inter-voxel variance shrinkage with an application to f MRI.
    Su SC; Caffo B; Garrett-Mayer E; Bassett SS
    Biostatistics; 2009 Apr; 10(2):219-27. PubMed ID: 18723853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating spatial dependence into Bayesian multiple testing of statistical parametric maps in functional neuroimaging.
    Brown DA; Lazar NA; Datta GS; Jang W; McDowell JE
    Neuroimage; 2014 Jan; 84():97-112. PubMed ID: 23981437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation.
    Ille S; Sollmann N; Hauck T; Maurer S; Tanigawa N; Obermueller T; Negwer C; Droese D; Zimmer C; Meyer B; Ringel F; Krieg SM
    J Neurosurg; 2015 Jul; 123(1):212-25. PubMed ID: 25748306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type I and Type II error concerns in fMRI research: re-balancing the scale.
    Lieberman MD; Cunningham WA
    Soc Cogn Affect Neurosci; 2009 Dec; 4(4):423-8. PubMed ID: 20035017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated cluster-wise significance measure for fMRI analysis.
    Ge Y; Chen G; Waltz JA; Hong LE; Kochunov P; Chen S
    Hum Brain Mapp; 2022 Jun; 43(8):2444-2459. PubMed ID: 35233859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Balancing Type I and Type II error concerns in fMRI through compartmentalized analysis.
    Cunningham WA; Koscik TR
    Cogn Neurosci; 2017 Jul; 8(3):147-149. PubMed ID: 28285552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of family-wise error rates in statistical parametric mapping using random field theory.
    Flandin G; Friston KJ
    Hum Brain Mapp; 2019 May; 40(7):2052-2054. PubMed ID: 29091338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accounting for Non-Gaussian Sources of Spatial Correlation in Parametric Functional Magnetic Resonance Imaging Paradigms I: Revisiting Cluster-Based Inferences.
    Gopinath K; Krishnamurthy V; Sathian K
    Brain Connect; 2018 Feb; 8(1):1-9. PubMed ID: 28927289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learned predictions of error likelihood in the anterior cingulate cortex.
    Brown JW; Braver TS
    Science; 2005 Feb; 307(5712):1118-21. PubMed ID: 15718473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resting-state fMRI data reflects default network activity rather than null data: A defense of commonly employed methods to correct for multiple comparisons.
    Slotnick SD
    Cogn Neurosci; 2017 Jul; 8(3):141-143. PubMed ID: 28002981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing neuronal activation by functional quantitative susceptibility mapping under a visual paradigm: A group level comparison with BOLD fMRI and PET.
    Ă–zbay PS; Warnock G; Rossi C; Kuhn F; Akin B; Pruessmann KP; Nanz D
    Neuroimage; 2016 Aug; 137():52-60. PubMed ID: 27155125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of false discovery rates for wavelet-denoised statistical parametric maps.
    Srikanth R; Casanova R; Laurienti PJ; Peiffer AM; Maldjian JA
    Neuroimage; 2006 Oct; 33(1):72-84. PubMed ID: 16919480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.