These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 26273059)

  • 1. DEVICE TECHNOLOGY. Nanomaterials in transistors: From high-performance to thin-film applications.
    Franklin AD
    Science; 2015 Aug; 349(6249):aab2750. PubMed ID: 26273059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of carbon nanotube- and graphene-based flexible thin-film transistors.
    Sun DM; Liu C; Ren WC; Cheng HM
    Small; 2013 Apr; 9(8):1188-205. PubMed ID: 23519953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon Nanotube Thin Film Transistors for Flat Panel Display Application.
    Liang X; Xia J; Dong G; Tian B; Peng L
    Top Curr Chem (Cham); 2016 Dec; 374(6):80. PubMed ID: 27873286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.
    Cao X; Chen H; Gu X; Liu B; Wang W; Cao Y; Wu F; Zhou C
    ACS Nano; 2014 Dec; 8(12):12769-76. PubMed ID: 25497107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Nanotube Thin Films for High-Performance Flexible Electronics Applications.
    Hirotani J; Ohno Y
    Top Curr Chem (Cham); 2019 Jan; 377(1):3. PubMed ID: 30600416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Printed carbon nanotube thin-film transistors: progress on printable materials and the path to applications.
    Lu S; Franklin AD
    Nanoscale; 2020 Dec; 12(46):23371-23390. PubMed ID: 33216106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors.
    Wang C; Zhang J; Zhou C
    ACS Nano; 2010 Dec; 4(12):7123-32. PubMed ID: 21062091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics.
    Sangwan VK; Ortiz RP; Alaboson JM; Emery JD; Bedzyk MJ; Lauhon LJ; Marks TJ; Hersam MC
    ACS Nano; 2012 Aug; 6(8):7480-8. PubMed ID: 22783918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional monolithic integration in flexible printed organic transistors.
    Kwon J; Takeda Y; Shiwaku R; Tokito S; Cho K; Jung S
    Nat Commun; 2019 Jan; 10(1):54. PubMed ID: 30604747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.
    Wan X; Huang Y; Chen Y
    Acc Chem Res; 2012 Apr; 45(4):598-607. PubMed ID: 22280410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics.
    Zhang J; Wang C; Zhou C
    ACS Nano; 2012 Aug; 6(8):7412-9. PubMed ID: 22788112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-based flexible and stretchable thin film transistors.
    Yan C; Cho JH; Ahn JH
    Nanoscale; 2012 Aug; 4(16):4870-82. PubMed ID: 22767356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Two-Dimensional Transport Phenomena in Metal Oxide Heterointerfaces for Next-Generation, High-Performance, Thin-Film Transistor Technologies.
    Labram JG; Lin YH; Anthopoulos TD
    Small; 2015 Nov; 11(41):5472-82. PubMed ID: 26349850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TFT Channel Materials for Display Applications: From Amorphous Silicon to Transition Metal Dichalcogenides.
    Shim GW; Hong W; Cha JH; Park JH; Lee KJ; Choi SY
    Adv Mater; 2020 Sep; 32(35):e1907166. PubMed ID: 32176401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid gate dielectric materials for unconventional electronic circuitry.
    Ha YG; Everaerts K; Hersam MC; Marks TJ
    Acc Chem Res; 2014 Apr; 47(4):1019-28. PubMed ID: 24428627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locally Gated SnS
    Chu D; Pak SW; Kim EK
    Sci Rep; 2018 Jul; 8(1):10585. PubMed ID: 30002408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors.
    Nomura K; Ohta H; Takagi A; Kamiya T; Hirano M; Hosono H
    Nature; 2004 Nov; 432(7016):488-92. PubMed ID: 15565150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible and stretchable thin-film transistors based on molybdenum disulphide.
    Pu J; Li LJ; Takenobu T
    Phys Chem Chem Phys; 2014 Aug; 16(29):14996-5006. PubMed ID: 24754038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress, Challenges, and Opportunities in Oxide Semiconductor Devices: A Key Building Block for Applications Ranging from Display Backplanes to 3D Integrated Semiconductor Chips.
    Kim T; Choi CH; Hur JS; Ha D; Kuh BJ; Kim Y; Cho MH; Kim S; Jeong JK
    Adv Mater; 2023 Oct; 35(43):e2204663. PubMed ID: 35862931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon Nanotube Macroelectronics for Active Matrix Polymer-Dispersed Liquid Crystal Displays.
    Cong S; Cao Y; Fang X; Wang Y; Liu Q; Gui H; Shen C; Cao X; Kim ES; Zhou C
    ACS Nano; 2016 Nov; 10(11):10068-10074. PubMed ID: 27763766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.