These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26273890)

  • 1. Low Critical Micelle Concentration Discrepancy between Theory and Experiment.
    García Daza FA; Mackie AD
    J Phys Chem Lett; 2014 Jun; 5(11):2027-32. PubMed ID: 26273890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mean-field coarse-grained model for poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer systems.
    García Daza FA; Colville AJ; Mackie AD
    Langmuir; 2015 Mar; 31(12):3596-604. PubMed ID: 25746687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chain architecture and micellization: a mean-field coarse-grained model for poly(ethylene oxide) alkyl ether surfactants.
    García Daza FA; Colville AJ; Mackie AD
    J Chem Phys; 2015 Mar; 142(11):114902. PubMed ID: 25796261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcalorimetric study on micellization of nonionic surfactants with a benzene ring or adamantane in their hydrophobic chains.
    Li Y; Reeve J; Wang Y; Thomas RK; Wang J; Yan H
    J Phys Chem B; 2005 Aug; 109(33):16070-4. PubMed ID: 16853041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication: Effect of solvophobic block length on critical micelle concentration in model surfactant systems.
    Nikoubashman A; Panagiotopoulos AZ
    J Chem Phys; 2014 Jul; 141(4):041101. PubMed ID: 25084867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micellization behavior of coarse grained surfactant models.
    Sanders SA; Panagiotopoulos AZ
    J Chem Phys; 2010 Mar; 132(11):114902. PubMed ID: 20331315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate critical micelle concentrations from a microscopic surfactant model.
    Gezae Daful A; Baulin VA; Bonet Avalos J; Mackie AD
    J Phys Chem B; 2011 Apr; 115(13):3434-43. PubMed ID: 21410187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micelle-monomer equilibria in solutions of ionic surfactants and in ionic-nonionic mixtures: a generalized phase separation model.
    Danov KD; Kralchevsky PA; Ananthapadmanabhan KP
    Adv Colloid Interface Sci; 2014 Apr; 206():17-45. PubMed ID: 23558017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementary use of simulations and molecular-thermodynamic theory to model micellization.
    Stephenson BC; Beers K; Blankschtein D
    Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A family of alkyl sulfate gemini surfactants. 1. Characterization of surface properties.
    Gao B; Sharma MM
    J Colloid Interface Sci; 2013 Aug; 404():80-4. PubMed ID: 23692916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption and micellar properties of a mixed system of nonionic-nonionic surfactants.
    Islam MN; Kato T
    J Colloid Interface Sci; 2005 Sep; 289(2):581-7. PubMed ID: 16024033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed micelle formation among anionic gemini surfactant (212) and its monomer (SDMA) with conventional surfactants (C12E5 and C12E8) in brine solution at pH 11.
    Ghosh S; Chakraborty T
    J Phys Chem B; 2007 Jul; 111(28):8080-8. PubMed ID: 17583935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular-thermodynamic theory of micellization of pH-sensitive surfactants.
    Goldsipe A; Blankschtein D
    Langmuir; 2006 Apr; 22(8):3547-59. PubMed ID: 16584226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Titration of mixed micelles containing a pH-sensitive surfactant and conventional (pH-Insensitive) surfactants: a regular solution theory modeling approach.
    Goldsipe A; Blankschtein D
    Langmuir; 2006 Nov; 22(24):9894-904. PubMed ID: 17106978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coarse-grained molecular dynamics simulation of the aggregation properties of multiheaded cationic surfactants in water.
    Samanta SK; Bhattacharya S; Maiti PK
    J Phys Chem B; 2009 Oct; 113(41):13545-50. PubMed ID: 19775096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical Micelle Concentrations of Nonionic Surfactants in Organic Solvents: Approximate Prediction with UNIFAC.
    Flores MV; Voutsas EC; Spiliotis N; Eccleston GM; Bell G; Tassios DP; Halling PJ
    J Colloid Interface Sci; 2001 Aug; 240(1):277-283. PubMed ID: 11446811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling counterion binding in ionic-nonionic and ionic-zwitterionic binary surfactant mixtures.
    Goldsipe A; Blankschtein D
    Langmuir; 2005 Oct; 21(22):9850-65. PubMed ID: 16229501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameterization of a mesoscopic model for the self-assembly of linear sodium alkyl sulfates.
    Mai Z; Couallier E; Rakib M; Rousseau B
    J Chem Phys; 2014 May; 140(20):204902. PubMed ID: 24880320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of conformational characteristics and micellar solution properties of fluorocarbon surfactants.
    Srinivasan V; Blankschtein D
    Langmuir; 2005 Feb; 21(4):1647-60. PubMed ID: 15697320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.