These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26273975)

  • 1. Rapid Dye Regeneration Mechanism of Dye-Sensitized Solar Cells.
    Jeon J; Park YC; Han SS; Goddard WA; Lee YS; Kim H
    J Phys Chem Lett; 2014 Dec; 5(24):4285-90. PubMed ID: 26273975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of Iodine-Free Redox Shuttles in Dye-Sensitized Solar Cells: Interfacial Recombination and Dye Regeneration.
    Sun Z; Liang M; Chen J
    Acc Chem Res; 2015 Jun; 48(6):1541-50. PubMed ID: 26001106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkyl chain barriers for kinetic optimization in dye-sensitized solar cells.
    Kroeze JE; Hirata N; Koops S; Nazeeruddin MK; Schmidt-Mende L; Grätzel M; Durrant JR
    J Am Chem Soc; 2006 Dec; 128(50):16376-83. PubMed ID: 17165794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elementary photoelectronic processes at a porphyrin dye/single-walled TiO2 nanotube hetero-interface in dye-sensitized solar cells: a first-principles study.
    Dong C; Li X; Zhao W; Jin P; Fan X; Qi J
    Chemistry; 2013 Jul; 19(30):10046-56. PubMed ID: 23765451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of dye regeneration kinetics in sensitized solar cells by scanning electrochemical microscopy.
    Zhang B; Xu X; Zhang X; Huang D; Li S; Zhang Y; Zhan F; Deng M; He Y; Chen W; Shen Y; Wang M
    Chemphyschem; 2014 Apr; 15(6):1182-9. PubMed ID: 24729527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inner-sphere electron-transfer single iodide mechanism for dye regeneration in dye-sensitized solar cells.
    Jeon J; Goddard WA; Kim H
    J Am Chem Soc; 2013 Feb; 135(7):2431-4. PubMed ID: 23384053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient dye regeneration at low driving force achieved in triphenylamine dye LEG4 and TEMPO redox mediator based dye-sensitized solar cells.
    Yang W; Vlachopoulos N; Hao Y; Hagfeldt A; Boschloo G
    Phys Chem Chem Phys; 2015 Jun; 17(24):15868-75. PubMed ID: 26016854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the terminal donor unit in dyes with D-D-π-A architecture on the regeneration mechanism in DSSCs: a computational study.
    Hailu YM; Nguyen MT; Jiang JC
    Phys Chem Chem Phys; 2018 Sep; 20(36):23564-23577. PubMed ID: 30187074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G; Hagfeldt A
    Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy.
    Haque SA; Palomares E; Cho BM; Green AN; Hirata N; Klug DR; Durrant JR
    J Am Chem Soc; 2005 Mar; 127(10):3456-62. PubMed ID: 15755165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency Considerations for SnO
    DiMarco BN; Sampaio RN; James EM; Barr TJ; Bennett MT; Meyer GJ
    ACS Appl Mater Interfaces; 2020 May; 12(21):23923-23930. PubMed ID: 32356647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast photodynamics of the indoline dye D149 adsorbed to porous ZnO in dye-sensitized solar cells.
    Rohwer E; Richter C; Heming N; Strauch K; Litwinski C; Nyokong T; Schlettwein D; Schwoerer H
    Chemphyschem; 2013 Jan; 14(1):132-9. PubMed ID: 23112080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fe(II)-Polypyridines as Chromophores in Dye-Sensitized Solar Cells: A Computational Perspective.
    Jakubikova E; Bowman DN
    Acc Chem Res; 2015 May; 48(5):1441-9. PubMed ID: 25919490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast and slow charge recombination dynamics of diketopyrrolopyrrole-NiO dye sensitized solar cells.
    Zhang L; Favereau L; Farré Y; Mijangos E; Pellegrin Y; Blart E; Odobel F; Hammarström L
    Phys Chem Chem Phys; 2016 Jul; 18(27):18515-27. PubMed ID: 27338174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast interfacial charge transfer from the LUMO+1 in ruthenium(ii) polypyridyl quinoxaline-sensitized solar cells.
    Shahroosvand H; Eskandari M
    Dalton Trans; 2018 Jan; 47(2):561-576. PubMed ID: 29239438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real.
    O'Regan BC; Durrant JR
    Acc Chem Res; 2009 Nov; 42(11):1799-808. PubMed ID: 19754041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of the N3 dye with the iodide redox shuttle: quantum chemical mechanistic studies of the dye regeneration in the dye-sensitized solar cell.
    Asaduzzaman AM; Schreckenbach G
    Phys Chem Chem Phys; 2011 Sep; 13(33):15148-57. PubMed ID: 21773632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailor-made hole-conducting coadsorbents for highly efficient organic dye-sensitized solar cells.
    Choi IT; Ju MJ; Song SH; Kim SG; Cho DW; Im C; Kim HK
    Chemistry; 2013 Nov; 19(46):15545-55. PubMed ID: 24115151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing dyes for dye-sensitized solar cells.
    Robertson N
    Angew Chem Int Ed Engl; 2006 Apr; 45(15):2338-45. PubMed ID: 16526079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of porphyrinic structure on electron transfer processes at the electrolyte/dye/TiO₂ interface in PSSCs: a comparison between meso push-pull and β-pyrrolic architectures.
    Di Carlo G; Caramori S; Trifiletti V; Giannuzzi R; De Marco L; Pizzotti M; Orbelli Biroli A; Tessore F; Argazzi R; Bignozzi CA
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15841-52. PubMed ID: 25089649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.