BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26273985)

  • 1. Mosaic of Water Orientation Structures at a Neutral Zwitterionic Lipid/Water Interface Revealed by Molecular Dynamics Simulations.
    Re S; Nishima W; Tahara T; Sugita Y
    J Phys Chem Lett; 2014 Dec; 5(24):4343-8. PubMed ID: 26273985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen-Bonding Structure at Zwitterionic Lipid/Water Interface.
    Ishiyama T; Terada D; Morita A
    J Phys Chem Lett; 2016 Jan; 7(2):216-20. PubMed ID: 26713682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three distinct water structures at a zwitterionic lipid/water interface revealed by heterodyne-detected vibrational sum frequency generation.
    Mondal JA; Nihonyanagi S; Yamaguchi S; Tahara T
    J Am Chem Soc; 2012 May; 134(18):7842-50. PubMed ID: 22533664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces.
    Roy S; Gruenbaum SM; Skinner JL
    J Chem Phys; 2014 Nov; 141(18):18C502. PubMed ID: 25399167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of lipid charge in organization of water/lipid bilayer interface: insights via computer simulations.
    Polyansky AA; Volynsky PE; Nolde DE; Arseniev AS; Efremov RG
    J Phys Chem B; 2005 Aug; 109(31):15052-9. PubMed ID: 16852905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative Hydrogen-Bond Dynamics at a Zwitterionic Lipid/Water Interface Revealed by 2D HD-VSFG Spectroscopy.
    Inoue KI; Singh PC; Nihonyanagi S; Yamaguchi S; Tahara T
    J Phys Chem Lett; 2017 Oct; 8(20):5160-5165. PubMed ID: 28990784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast Dynamics at Lipid-Water Interfaces.
    Flanagan JC; Valentine ML; Baiz CR
    Acc Chem Res; 2020 Sep; 53(9):1860-1868. PubMed ID: 32866390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. II. Two-dimensional spectra.
    Roy S; Gruenbaum SM; Skinner JL
    J Chem Phys; 2014 Dec; 141(22):22D505. PubMed ID: 25494776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial Water Structure at Zwitterionic Membrane/Water Interface: The Importance of Interactions between Water and Lipid Carbonyl Groups.
    Shen H; Wu Z; Zou X
    ACS Omega; 2020 Jul; 5(29):18080-18090. PubMed ID: 32743182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of surface charge and curvature for the binding orientation of Thermomyces lanuginosus lipase on negatively charged or zwitterionic phospholipid vesicles as studied by ESR spectroscopy.
    Hedin EM; Høyrup P; Patkar SA; Vind J; Svendsen A; Hult K
    Biochemistry; 2005 Dec; 44(50):16658-71. PubMed ID: 16342956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating POPC and POPC/POPG Bilayers: Conserved Packing and Altered Surface Reactivity.
    Janosi L; Gorfe AA
    J Chem Theory Comput; 2010 Oct; 6(10):3267-73. PubMed ID: 26616788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Dynamics Simulations of Human Beta-Defensin Type 3 Crossing Different Lipid Bilayers.
    Yeasmin R; Brewer A; Fine LR; Zhang L
    ACS Omega; 2021 Jun; 6(21):13926-13939. PubMed ID: 34095684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and orientation of water at charged lipid monolayer/water interfaces probed by heterodyne-detected vibrational sum frequency generation spectroscopy.
    Mondal JA; Nihonyanagi S; Yamaguchi S; Tahara T
    J Am Chem Soc; 2010 Aug; 132(31):10656-7. PubMed ID: 20681689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steered molecular dynamics simulations of cobra cytotoxin interaction with zwitterionic lipid bilayer: no penetration of loop tips into membranes.
    Levtsova OV; Antonov MY; Mordvintsev DY; Utkin YN; Shaitan KV; Kirpichnikov MP
    Comput Biol Chem; 2009 Feb; 33(1):29-32. PubMed ID: 18774341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational Sum Frequency Generation Spectroscopy of the Water Liquid-Vapor Interface from Density Functional Theory-Based Molecular Dynamics Simulations.
    Sulpizi M; Salanne M; Sprik M; Gaigeot MP
    J Phys Chem Lett; 2013 Jan; 4(1):83-7. PubMed ID: 26291216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface water dynamics and porating electric fields for phospholipid bilayers.
    Ziegler MJ; Vernier PT
    J Phys Chem B; 2008 Oct; 112(43):13588-96. PubMed ID: 18837540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of hematoporphyrin with lipid membranes.
    Stępniewski M; Kepczynski M; Jamróz D; Nowakowska M; Rissanen S; Vattulainen I; Róg T
    J Phys Chem B; 2012 Apr; 116(16):4889-97. PubMed ID: 22482736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation.
    Nihonyanagi S; Mondal JA; Yamaguchi S; Tahara T
    Annu Rev Phys Chem; 2013; 64():579-603. PubMed ID: 23331304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water replacement hypothesis in atomic details: effect of trehalose on the structure of single dehydrated POPC bilayers.
    Golovina EA; Golovin A; Hoekstra FA; Faller R
    Langmuir; 2010 Jul; 26(13):11118-26. PubMed ID: 20550154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.