BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 26274013)

  • 1. Circadian rhythmicity of synapses in mouse somatosensory cortex.
    Jasinska M; Grzegorczyk A; Woznicka O; Jasek E; Kossut M; Barbacka-Surowiak G; Litwin JA; Pyza E
    Eur J Neurosci; 2015 Oct; 42(8):2585-94. PubMed ID: 26274013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Daily rhythm of synapse turnover in mouse somatosensory cortex.
    Jasinska M; Grzegorczyk A; Jasek E; Litwin JA; Kossut M; Barbacka-Surowiak G; Pyza E
    Acta Neurobiol Exp (Wars); 2014; 74(1):104-10. PubMed ID: 24718049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian Changes of Dendritic Spine Geometry in Mouse Barrel Cortex.
    Jasinska M; Woznicka O; Jasek-Gajda E; Lis GJ; Pyza E; Litwin JA
    Front Neurosci; 2020; 14():578881. PubMed ID: 33117123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian clock regulates the shape and content of dendritic spines in mouse barrel cortex.
    Jasinska M; Jasek-Gajda E; Woznicka O; Lis GJ; Pyza E; Litwin JA
    PLoS One; 2019; 14(11):e0225394. PubMed ID: 31730670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fear learning increases the number of polyribosomes associated with excitatory and inhibitory synapses in the barrel cortex.
    Jasinska M; Siucinska E; Jasek E; Litwin JA; Pyza E; Kossut M
    PLoS One; 2013; 8(2):e54301. PubMed ID: 23457448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and plasticity of the double synapse spines in the barrel cortex of the mouse.
    Jasińska M; Siucińska E; Głazewski S; Pyza E; Kossut M
    Acta Neurobiol Exp (Wars); 2006; 66(2):99-104. PubMed ID: 16886719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Associative Learning on Memory Spine Formation in Mouse Barrel Cortex.
    Jasinska M; Siucinska E; Jasek E; Litwin JA; Pyza E; Kossut M
    Neural Plast; 2016; 2016():9828517. PubMed ID: 26819780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata).
    Vera LM; Negrini P; Zagatti C; Frigato E; Sánchez-Vázquez FJ; Bertolucci C
    Chronobiol Int; 2013 Jun; 30(5):649-61. PubMed ID: 23688119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synapse formation in adult barrel cortex following naturalistic environmental enrichment.
    Landers MS; Knott GW; Lipp HP; Poletaeva I; Welker E
    Neuroscience; 2011 Dec; 199():143-52. PubMed ID: 22061424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Daily oscillation in melatonin synthesis in the Turkey pineal gland and retina: diurnal and circadian rhythms.
    Zawilska JB; Lorenc A; Berezińska M; Vivien-Roels B; Pévet P; Skene DJ
    Chronobiol Int; 2006; 23(1-2):341-50. PubMed ID: 16687307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice.
    Knott GW; Quairiaux C; Genoud C; Welker E
    Neuron; 2002 Apr; 34(2):265-73. PubMed ID: 11970868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced light-entrained activity onsets and restored free-running suprachiasmatic nucleus circadian rhythms in per2/dec mutant mice.
    Bode B; Taneja R; Rossner MJ; Oster H
    Chronobiol Int; 2011 Nov; 28(9):737-50. PubMed ID: 22080784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic vesicles in motor synapses change size and distribution during the day.
    Ruiz S; Ferreiro MJ; Casanova G; Olivera A; Cantera R
    Synapse; 2010 Jan; 64(1):14-9. PubMed ID: 19725115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volume electron microscopy of the distribution of synapses in the neuropil of the juvenile rat somatosensory cortex.
    Santuy A; Rodriguez JR; DeFelipe J; Merchan-Perez A
    Brain Struct Funct; 2018 Jan; 223(1):77-90. PubMed ID: 28721455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use-dependent inhibition of dendritic spines.
    Keller A
    Trends Neurosci; 2002 Nov; 25(11):541-3; discussion 543-4. PubMed ID: 12392919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociation between the circadian rhythm of locomotor activity and the pineal clock in the Japanese newt.
    Chiba A; Kikuchi M; Aoki K
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Aug; 189(8):655-9. PubMed ID: 12844232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructural, Molecular and Functional Mapping of GABAergic Synapses on Dendritic Spines and Shafts of Neocortical Pyramidal Neurons.
    Kwon T; Merchán-Pérez A; Rial Verde EM; Rodríguez JR; DeFelipe J; Yuste R
    Cereb Cortex; 2019 Jul; 29(7):2771-2781. PubMed ID: 30113619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stocking density affects circadian rhythms of locomotor activity in African catfish, Clarias gariepinus.
    Vera LM; Al-Khamees S; Herv M
    Chronobiol Int; 2011 Nov; 28(9):751-7. PubMed ID: 21895490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic, experience-dependent modulation of synaptic zinc within the excitatory synapses of the mouse barrel cortex.
    Nakashima AS; Dyck RH
    Neuroscience; 2010 Nov; 170(4):1015-9. PubMed ID: 20727945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-synaptic dendritic spines in neocortex.
    Arellano JI; Espinosa A; Fairén A; Yuste R; DeFelipe J
    Neuroscience; 2007 Mar; 145(2):464-9. PubMed ID: 17240073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.