BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26274060)

  • 1. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae.
    Napan K; Hess D; McNeil B; Quinn JC
    J Vis Exp; 2015 Jul; (101):e52936. PubMed ID: 26274060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of inorganic contaminants on microalgae productivity and bioremediation potential.
    Torres EM; Hess D; McNeil BT; Guy T; Quinn JC
    Ecotoxicol Environ Saf; 2017 May; 139():367-376. PubMed ID: 28189778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production.
    Yadav G; Dash SK; Sen R
    Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microalgae Cultivation and Biomass Quantification in a Bench-Scale Photobioreactor with Corrosive Flue Gases.
    Molitor HR; Williard DE; Schnoor JL
    J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.
    McGinn PJ; Dickinson KE; Bhatti S; Frigon JC; Guiot SR; O'Leary SJ
    Photosynth Res; 2011 Sep; 109(1-3):231-47. PubMed ID: 21461850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cultivation of marine microalgae using shale gas flowback water and anaerobic digestion effluent as the cultivation medium.
    Racharaks R; Ge X; Li Y
    Bioresour Technol; 2015 Sep; 191():146-56. PubMed ID: 25989090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO
    Aslam A; Thomas-Hall SR; Mughal T; Zaman QU; Ehsan N; Javied S; Schenk PM
    J Environ Manage; 2019 Jul; 241():243-250. PubMed ID: 31005725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of mono- and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source.
    Davis RW; Siccardi AJ; Huysman ND; Wyatt NB; Hewson JC; Lane TW
    Bioresour Technol; 2015 Dec; 198():577-85. PubMed ID: 26433155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Total contents and sequential extraction of heavy metals in soils irrigated with wastewater, Akaki, Ethiopia.
    Fitamo D; Itana F; Olsson M
    Environ Manage; 2007 Feb; 39(2):178-93. PubMed ID: 17160509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of environmental factors on carbon dioxide fixation by microalgae.
    Morales M; Sánchez L; Revah S
    FEMS Microbiol Lett; 2018 Feb; 365(3):. PubMed ID: 29228188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flue-gas-influenced heavy metal bioaccumulation by the indigenous microalgae Desmodesmus communis LUCC 002.
    Palanisami S; Lee K; Balakrishnan B; Nam PK
    Environ Technol; 2015; 36(1-4):463-9. PubMed ID: 25184415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds.
    Zhu B; Sun F; Yang M; Lu L; Yang G; Pan K
    Bioresour Technol; 2014 Dec; 174():53-9. PubMed ID: 25463781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp.
    Kao CY; Chen TY; Chang YB; Chiu TW; Lin HY; Chen CD; Chang JS; Lin CS
    Bioresour Technol; 2014 Aug; 166():485-93. PubMed ID: 24950094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global evaluation of biofuel potential from microalgae.
    Moody JW; McGinty CM; Quinn JC
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8691-6. PubMed ID: 24912176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pollutants from fish feeding recycled for microalgae production as sustainable, renewable and valuable products.
    Chan H
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1474-1486. PubMed ID: 30430445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater.
    Kamika I; Momba MN
    BMC Microbiol; 2013 Feb; 13():28. PubMed ID: 23387904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perspectives on the feasibility of using microalgae for industrial wastewater treatment.
    Wang Y; Ho SH; Cheng CL; Guo WQ; Nagarajan D; Ren NQ; Lee DJ; Chang JS
    Bioresour Technol; 2016 Dec; 222():485-497. PubMed ID: 27765375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of a screening procedure of microalgae for biodiesel production: application to the genus of marine microalgae Nannochloropsis.
    Taleb A; Pruvost J; Legrand J; Marec H; Le-Gouic B; Mirabella B; Legeret B; Bouvet S; Peltier G; Li-Beisson Y; Taha S; Takache H
    Bioresour Technol; 2015 Feb; 177():224-32. PubMed ID: 25496942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of Waste Valorization for Sustainable Production of Chemicals and Materials via Algal Cultivation.
    Chen Y; Sun LP; Liu ZH; Martin G; Sun Z
    Top Curr Chem (Cham); 2017 Nov; 375(6):89. PubMed ID: 29181595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas Transfer Controls Carbon Limitation During Biomass Production by Marine Microalgae.
    Tamburic B; Evenhuis CR; Suggett DJ; Larkum AW; Raven JA; Ralph PJ
    ChemSusChem; 2015 Aug; 8(16):2727-36. PubMed ID: 26212226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.