These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26274081)

  • 1. Chemical Control of Hydrodynamic Instabilities in Partially Miscible Two-Layer Systems.
    Budroni MA; Riolfo LA; Lemaigre L; Rossi F; Rustici M; De Wit A
    J Phys Chem Lett; 2014 Mar; 5(5):875-81. PubMed ID: 26274081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical control of dissolution-driven convection in partially miscible systems: nonlinear simulations and experiments.
    Budroni MA; Thomas C; De Wit A
    Phys Chem Chem Phys; 2017 Mar; 19(11):7936-7946. PubMed ID: 28262876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemo-hydrodynamic patterns in porous media.
    De Wit A
    Philos Trans A Math Phys Eng Sci; 2016 Oct; 374(2078):. PubMed ID: 27597788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial hydrodynamic instabilities driven by cross-diffusion in reverse microemulsions.
    Budroni MA; Carballido-Landeira J; Intiso A; De Wit A; Rossi F
    Chaos; 2015 Jun; 25(6):064502. PubMed ID: 26117125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-diffusion-induced convective patterns in microemulsion systems.
    Budroni MA; Lemaigre L; De Wit A; Rossi F
    Phys Chem Chem Phys; 2015 Jan; 17(3):1593-600. PubMed ID: 25226031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction to the focus issue: chemo-hydrodynamic patterns and instabilities.
    De Wit A; Eckert K; Kalliadasis S
    Chaos; 2012 Sep; 22(3):037101. PubMed ID: 23020492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Organized Traveling Chemo-Hydrodynamic Fingers Triggered by a Chemical Oscillator.
    Escala DM; Budroni MA; Carballido-Landeira J; De Wit A; Muñuzuri AP
    J Phys Chem Lett; 2014 Feb; 5(3):413-8. PubMed ID: 26276584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of convective dissolution by chemical reactions: general classification and application to CO(2) dissolution in reactive aqueous solutions.
    Loodts V; Thomas C; Rongy L; De Wit A
    Phys Rev Lett; 2014 Sep; 113(11):114501. PubMed ID: 25259984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical control of dissolution-driven convection in partially miscible systems: theoretical classification.
    Loodts V; Rongy L; De Wit A
    Phys Chem Chem Phys; 2015 Nov; 17(44):29814-23. PubMed ID: 26486608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-diffusion-driven hydrodynamic instabilities in a double-layer system: General classification and nonlinear simulations.
    Budroni MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063007. PubMed ID: 26764804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced steady-state dissolution flux in reactive convective dissolution.
    Loodts V; Knaepen B; Rongy L; De Wit A
    Phys Chem Chem Phys; 2017 Jul; 19(28):18565-18579. PubMed ID: 28686243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convective mixing induced by acid-base reactions.
    Almarcha C; R'Honi Y; De Decker Y; Trevelyan PM; Eckert K; De Wit A
    J Phys Chem B; 2011 Aug; 115(32):9739-44. PubMed ID: 21793552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemo-hydrodynamic pulsations in simple batch A + B → C systems.
    Budroni MA; Polo A; Upadhyay V; Bigaj A; Rongy L
    J Chem Phys; 2021 Mar; 154(11):114501. PubMed ID: 33752375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Buoyancy-driven instabilities around miscible A+B→C reaction fronts: a general classification.
    Trevelyan PM; Almarcha C; De Wit A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023001. PubMed ID: 25768591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of Rayleigh-Taylor instability onset time and convective velocity by differential diffusion effects.
    Gopalakrishnan SS; Carballido-Landeira J; Knaepen B; De Wit A
    Phys Rev E; 2018 Jul; 98(1-1):011101. PubMed ID: 30110793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface tension- and buoyancy-driven flows across horizontally propagating chemical fronts.
    Tiani R; De Wit A; Rongy L
    Adv Colloid Interface Sci; 2018 May; 255():76-83. PubMed ID: 28826815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential diffusion effects on buoyancy-driven instabilities of acid-base fronts: the case of a color indicator.
    Kuster S; Riolfo LA; Zalts A; El Hasi C; Almarcha C; Trevelyan PM; De Wit A; D'Onofrio A
    Phys Chem Chem Phys; 2011 Oct; 13(38):17295-303. PubMed ID: 21881652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern formation and coarsening dynamics in three-dimensional convective mixing in porous media.
    Fu X; Cueto-Felgueroso L; Juanes R
    Philos Trans A Math Phys Eng Sci; 2013 Dec; 371(2004):20120355. PubMed ID: 24471271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Marangoni flows on the dynamics of isothermal A + B → C reaction fronts.
    Tiani R; Rongy L
    J Chem Phys; 2016 Sep; 145(12):124701. PubMed ID: 27782642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers.
    Rongy L; Goyal N; Meiburg E; De Wit A
    J Chem Phys; 2007 Sep; 127(11):114710. PubMed ID: 17887873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.