These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 26274081)
21. Dynamics due to combined buoyancy- and Marangoni-driven convective flows around autocatalytic fronts. Budroni MA; Rongy L; De Wit A Phys Chem Chem Phys; 2012 Nov; 14(42):14619-29. PubMed ID: 23032937 [TBL] [Abstract][Full Text] [Related]
22. Evaporation-induced Rayleigh-Taylor instabilities in polymer solutions. Mossige EJ; Chandran Suja V; Islamov M; Wheeler SF; Fuller GG Philos Trans A Math Phys Eng Sci; 2020 Jun; 378(2174):20190533. PubMed ID: 32507094 [TBL] [Abstract][Full Text] [Related]
23. On the classification of buoyancy-driven chemo-hydrodynamic instabilities of chemical fronts. D'Hernoncourt J; Zebib A; De Wit A Chaos; 2007 Mar; 17(1):013109. PubMed ID: 17411245 [TBL] [Abstract][Full Text] [Related]
24. Impact of pressure, salt concentration, and temperature on the convective dissolution of carbon dioxide in aqueous solutions. Loodts V; Rongy L; De Wit A Chaos; 2014 Dec; 24(4):043120. PubMed ID: 25554040 [TBL] [Abstract][Full Text] [Related]
25. Buoyancy-Driven Chemohydrodynamic Patterns in A + B → Oscillator Two-Layer Stratifications. Budroni MA; Lemaigre L; Escala DM; Wit A Langmuir; 2023 Jan; 39(3):997-1009. PubMed ID: 36623172 [TBL] [Abstract][Full Text] [Related]
26. Nonmonotonic Rayleigh-Taylor instabilities driven by gas-liquid CO2 chemisorption. Wylock C; Rednikov A; Haut B; Colinet P J Phys Chem B; 2014 Sep; 118(38):11323-9. PubMed ID: 25181607 [TBL] [Abstract][Full Text] [Related]
27. Thermal effects on the diffusive layer convection instability of an exothermic acid-base reaction front. Almarcha C; Trevelyan PM; Grosfils P; De Wit A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033009. PubMed ID: 24125346 [TBL] [Abstract][Full Text] [Related]
28. Pattern formation and coarsening dynamics in three-dimensional convective mixing in porous media. Fu X; Cueto-Felgueroso L; Juanes R Philos Trans A Math Phys Eng Sci; 2013; 371(2004):20120355. PubMed ID: 24191109 [TBL] [Abstract][Full Text] [Related]
29. Solitary Marangoni-driven convective structures in bistable chemical systems. Rongy L; De Wit A Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046310. PubMed ID: 18517735 [TBL] [Abstract][Full Text] [Related]
30. Reactive Transport Modeling of the Enhancement of Density-Driven CO2 Convective Mixing in Carbonate Aquifers and its Potential Implication on Geological Carbon Sequestration. Islam A; Sun AY; Yang C Sci Rep; 2016 Apr; 6():24768. PubMed ID: 27094448 [TBL] [Abstract][Full Text] [Related]
31. Kelvin-Helmholtz and Holmboe instabilities of a diffusive interface between miscible phases. Zagvozkin T; Vorobev A; Lyubimova T Phys Rev E; 2019 Aug; 100(2-1):023103. PubMed ID: 31574712 [TBL] [Abstract][Full Text] [Related]
32. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. II. Nonlinear simulations. D'Hernoncourt J; Merkin JH; De Wit A J Chem Phys; 2009 Mar; 130(11):114503. PubMed ID: 19317541 [TBL] [Abstract][Full Text] [Related]
33. Making a Simple A+B→C Reaction Oscillate by Coupling to Hydrodynamic Effect. Budroni MA; Upadhyay V; Rongy L Phys Rev Lett; 2019 Jun; 122(24):244502. PubMed ID: 31322378 [TBL] [Abstract][Full Text] [Related]
39. Enhanced convective dissolution due to an A + B → C reaction: control of the non-linear dynamics via solutal density contributions. Jotkar M; De Wit A; Rongy L Phys Chem Chem Phys; 2019 Mar; 21(12):6432-6442. PubMed ID: 30839024 [TBL] [Abstract][Full Text] [Related]
40. Marangoni-driven nonlinear dynamics of bimolecular frontal systems: a general classification for equal diffusion coefficients. Tiani R; Rongy L Philos Trans A Math Phys Eng Sci; 2023 Apr; 381(2245):20220080. PubMed ID: 36842981 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]