BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 26274135)

  • 1. Construction and optimization of a quantum analog of the Carnot cycle.
    Xiao G; Gong J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012118. PubMed ID: 26274135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance analysis of a two-state quantum heat engine working with a single-mode radiation field in a cavity.
    Wang J; He J; He X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041127. PubMed ID: 22181107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.
    Xu YY; Chen B; Liu J
    Phys Rev E; 2018 Feb; 97(2-1):022130. PubMed ID: 29548214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-particle stochastic heat engine.
    Rana S; Pal PS; Saha A; Jayannavar AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action and Entropy in Heat Engines: An Action Revision of the Carnot Cycle.
    Kennedy IR; Hodzic M
    Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021133. PubMed ID: 23005748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-Particle Representation of Heat Conduction Described within the Scope of the Second Law.
    Jesudason CG
    PLoS One; 2016; 11(1):e0145026. PubMed ID: 26760507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency at maximum power of a quantum heat engine based on two coupled oscillators.
    Wang J; Ye Z; Lai Y; Li W; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062134. PubMed ID: 26172688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases.
    Chen L; Meng Z; Ge Y; Wu F
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33925622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum heat engine in the relativistic limit: the case of a Dirac particle.
    Muñoz E; Peña FJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061108. PubMed ID: 23367894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of quantum Otto and Carnot engines powered by a spin working substance.
    Abd-Rabbou MY; Rahman AU; Yurischev MA; Haddadi S
    Phys Rev E; 2023 Sep; 108(3-1):034106. PubMed ID: 37849157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiparticle quantum Szilard engine with optimal cycles assisted by a Maxwell's demon.
    Cai CY; Dong H; Sun CP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031114. PubMed ID: 22587045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetically driven quantum heat engine.
    Muñoz E; Peña FJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052107. PubMed ID: 25353739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale.
    Quan HT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062134. PubMed ID: 25019751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-dependent maximization of work and efficiency in a degeneracy-assisted quantum Stirling heat engine.
    Chatterjee S; Koner A; Chatterjee S; Kumar C
    Phys Rev E; 2021 Jun; 103(6-1):062109. PubMed ID: 34271723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Work extremum principle: structure and function of quantum heat engines.
    Allahverdyan AE; Johal RS; Mahler G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041118. PubMed ID: 18517589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency at maximum power of a heat engine working with a two-level atomic system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal Power and Efficiency of Multi-Stage Endoreversible Quantum Carnot Heat Engine with Harmonic Oscillators at the Classical Limit.
    Meng Z; Chen L; Wu F
    Entropy (Basel); 2020 Apr; 22(4):. PubMed ID: 33286231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical equivalent of quantum heat engines.
    Arnaud J; Chusseau L; Philippe F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061102. PubMed ID: 18643212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum thermodynamic cycles and quantum heat engines.
    Quan HT; Liu YX; Sun CP; Nori F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031105. PubMed ID: 17930197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.