These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26274188)

  • 1. Rotation-limited growth of three-dimensional body-centered-cubic crystals.
    Tarp JM; Mathiesen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012409. PubMed ID: 26274188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotation-induced grain growth and stagnation in phase-field crystal models.
    Bjerre M; Tarp JM; Angheluta L; Mathiesen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):020401. PubMed ID: 24032765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling behavior of grain-rotation-induced grain growth.
    Moldovan D; Yamakov V; Wolf D; Phillpot SR
    Phys Rev Lett; 2002 Nov; 89(20):206101. PubMed ID: 12443489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of film growth kinetics on grain coarsening and grain shape.
    Reis FDAA
    Phys Rev E; 2017 Apr; 95(4-1):042805. PubMed ID: 28505723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coarsening in polycrystalline material using quaternions.
    Biswas S; Samajdar I; Haldar A; Sain A
    J Phys Condens Matter; 2011 Feb; 23(7):072202. PubMed ID: 21411872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling laws for critical manifolds in polycrystalline materials.
    Meinke JH; McGarrity ES; Duxbury PM; Holm EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066107. PubMed ID: 14754269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of grain rotation-induced grain coalescence in two-dimensional colloidal crystals.
    Moore LJ; Dear RD; Summers MD; Dullens RP; Ritchie GA
    Nano Lett; 2010 Oct; 10(10):4266-72. PubMed ID: 20853830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesoscale theory of grains and cells: crystal plasticity and coarsening.
    Limkumnerd S; Sethna JP
    Phys Rev Lett; 2006 Mar; 96(9):095503. PubMed ID: 16606276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colossal grain growth yields single-crystal metal foils by contact-free annealing.
    Jin S; Huang M; Kwon Y; Zhang L; Li BW; Oh S; Dong J; Luo D; Biswal M; Cunning BV; Bakharev PV; Moon I; Yoo WJ; Camacho-Mojica DC; Kim YJ; Lee SH; Wang B; Seong WK; Saxena M; Ding F; Shin HJ; Ruoff RS
    Science; 2018 Nov; 362(6418):1021-1025. PubMed ID: 30337454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulations of two-dimensional and three-dimensional ideal grain growth.
    Kim SG; Kim DI; Kim WT; Park YB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061605. PubMed ID: 17280076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ordering mechanisms in two-dimensional sphere-forming block copolymers.
    Vega DA; Harrison CK; Angelescu DE; Trawick ML; Huse DA; Chaikin PM; Register RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061803. PubMed ID: 16089757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polycrystal Simulation of Texture-Induced Grain Coarsening during Severe Plastic Deformation.
    Zhang C; Toth LS
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33371398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grain splitting is a mechanism for grain coarsening in colloidal polycrystals.
    Barth AR; Martinez MH; Payne CE; Couto CG; Quintas IJ; Soncharoen I; Brown NM; Weissler EJ; Gerbode SJ
    Phys Rev E; 2021 Nov; 104(5):L052601. PubMed ID: 34942692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear-assisted grain coarsening in colloidal polycrystals.
    Li W; Peng Y; Zhang Y; Still T; Yodh AG; Han Y
    Proc Natl Acad Sci U S A; 2020 Sep; 117(39):24055-24060. PubMed ID: 32938800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure modulation driven by cyclic deformation in nanocrystalline NiFe.
    Cheng S; Zhao Y; Wang Y; Li Y; Wang XL; Liaw PK; Lavernia EJ
    Phys Rev Lett; 2010 Jun; 104(25):255501. PubMed ID: 20867394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth dynamics for DNA-guided nanoparticle crystallization.
    Dhakal S; Kohlstedt KL; Schatz GC; Mirkin CA; Olvera de la Cruz M
    ACS Nano; 2013 Dec; 7(12):10948-59. PubMed ID: 24274629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Energy Driven Cubic-to-Hexagonal Grain Growth of Ge
    Zheng Y; Cheng Y; Huang R; Qi R; Rao F; Ding K; Yin W; Song S; Liu W; Song Z; Feng S
    Sci Rep; 2017 Jul; 7(1):5915. PubMed ID: 28725023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of the cubic coincident site lattice rotation group.
    Reed BW; Minich RW; Rudd RE; Kumar M
    Acta Crystallogr A; 2004 May; 60(Pt 3):263-77. PubMed ID: 15103171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defect formation and coarsening in hexagonal 2D curved crystals.
    García NA; Pezzutti AD; Register RA; Vega DA; Gómez LR
    Soft Matter; 2015 Feb; 11(5):898-907. PubMed ID: 25491780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical vapor deposition of graphene single crystals.
    Yan Z; Peng Z; Tour JM
    Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.