BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 26274197)

  • 1. Phase transition of vortexlike self-propelled particles induced by a hostile particle.
    Duan H; Zhang X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012701. PubMed ID: 26274197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-organized vortices of circling self-propelled particles and curved active flagella.
    Yang Y; Qiu F; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012720. PubMed ID: 24580270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal and athermal three-dimensional swarms of self-propelled particles.
    Nguyen NH; Jankowski E; Glotzer SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011136. PubMed ID: 23005397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vortex formation of spherical self-propelled particles around a circular obstacle.
    Pan JX; Wei H; Qi MJ; Wang HF; Zhang JJ; Tian WD; Chen K
    Soft Matter; 2020 Jun; 16(23):5545-5551. PubMed ID: 32510067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vortex formation by active agents as a model for Daphnia swarming.
    Vollmer J; Vegh AG; Lange C; Eckhardt B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061924. PubMed ID: 16906881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling vortex swarming in Daphnia.
    Mach R; Schweitzer F
    Bull Math Biol; 2007 Feb; 69(2):539-62. PubMed ID: 16924431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vortex formation in swarms of interacting particles.
    McInnes CR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):032904. PubMed ID: 17500746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear stability of vortex formation in swarms of interacting particles.
    Mabrouk MH; McInnes CR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):012903. PubMed ID: 18764003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collective dynamics of self-propelled particles with variable speed.
    Mishra S; Tunstrøm K; Couzin ID; Huepe C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011901. PubMed ID: 23005446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-order phase transition in a model of self-propelled particles with variable angular range of interaction.
    Durve M; Sayeed A
    Phys Rev E; 2016 May; 93(5):052115. PubMed ID: 27300838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of Collective Motion in a Model of Interacting Brownian Particles.
    Dossetti V; Sevilla FJ
    Phys Rev Lett; 2015 Jul; 115(5):058301. PubMed ID: 26274444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collective motion of self-propelled particles interacting without cohesion.
    Chaté H; Ginelli F; Grégoire G; Raynaud F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046113. PubMed ID: 18517696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nature of the order-disorder transition in the Vicsek model for the collective motion of self-propelled particles.
    Baglietto G; Albano EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):050103. PubMed ID: 20364937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coarsening dynamics of binary liquids with active rotation.
    Sabrina S; Spellings M; Glotzer SC; Bishop KJ
    Soft Matter; 2015 Nov; 11(43):8409-16. PubMed ID: 26345231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-propelled particle transport in regular arrays of rigid asymmetric obstacles.
    Potiguar FQ; Farias GA; Ferreira WP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012307. PubMed ID: 25122303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swarm behavior of self-propelled rods and swimming flagella.
    Yang Y; Marceau V; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031904. PubMed ID: 21230105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transitions in a self-propelled-particles model with coupling of accelerations.
    Szabó P; Nagy M; Vicsek T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021908. PubMed ID: 19391779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic clustering of driven colloidal particles on a circular path.
    Okubo S; Shibata S; Kawamura YS; Ichikawa M; Kimura Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032303. PubMed ID: 26465469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformable self-propelled particles with a global coupling.
    Ohkuma T; Ohta T
    Chaos; 2010 Jun; 20(2):023101. PubMed ID: 20590297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonequilibrium clustering of self-propelled rods.
    Peruani F; Deutsch A; Bär M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):030904. PubMed ID: 17025586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.