BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26274236)

  • 1. Most probable paths in temporal weighted networks: An application to ocean transport.
    Ser-Giacomi E; Vasile R; Hernández-García E; López C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012818. PubMed ID: 26274236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Range-limited centrality measures in complex networks.
    Ercsey-Ravasz M; Lichtenwalter RN; Chawla NV; Toroczkai Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066103. PubMed ID: 23005158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sum-over-paths covariance kernel: a novel covariance measure between nodes of a directed graph.
    Mantrach A; Yen L; Callut J; Francoisse K; Shimbo M; Saerens M
    IEEE Trans Pattern Anal Mach Intell; 2010 Jun; 32(6):1112-26. PubMed ID: 20431135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Path lengths, correlations, and centrality in temporal networks.
    Pan RK; Saramäki J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016105. PubMed ID: 21867255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explicit and implicit network connectivity: Analytical formulation and application to transport processes.
    Ser-Giacomi E; Legrand T; Hernández-Carrasco I; Rossi V
    Phys Rev E; 2021 Apr; 103(4-1):042309. PubMed ID: 34005882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dominant transport pathways in an atmospheric blocking event.
    Ser-Giacomi E; Vasile R; Recuerda I; Hernández-García E; López C
    Chaos; 2015 Aug; 25(8):087413. PubMed ID: 26328584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America.
    Carroll C; McRae BH; Brookes A
    Conserv Biol; 2012 Feb; 26(1):78-87. PubMed ID: 22010832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport in weighted networks: partition into superhighways and roads.
    Wu Z; Braunstein LA; Havlin S; Stanley HE
    Phys Rev Lett; 2006 Apr; 96(14):148702. PubMed ID: 16712129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Centrality scaling in large networks.
    Ercsey-Ravasz M; Toroczkai Z
    Phys Rev Lett; 2010 Jul; 105(3):038701. PubMed ID: 20867816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Betweenness centrality for temporal multiplexes.
    Zaoli S; Mazzarisi P; Lillo F
    Sci Rep; 2021 Mar; 11(1):4919. PubMed ID: 33649386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability.
    van der Linden JH; Narsilio GA; Tordesillas A
    Phys Rev E; 2016 Aug; 94(2-1):022904. PubMed ID: 27627377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorbing random walks interpolating between centrality measures on complex networks.
    Gurfinkel AJ; Rikvold PA
    Phys Rev E; 2020 Jan; 101(1-1):012302. PubMed ID: 32069664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics-based centrality for directed networks.
    Masuda N; Kori H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056107. PubMed ID: 21230545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal node centrality in complex networks.
    Kim H; Anderson R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026107. PubMed ID: 22463279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameterized centrality metric for network analysis.
    Ghosh R; Lerman K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066118. PubMed ID: 21797452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Betweenness preference: quantifying correlations in the topological dynamics of temporal networks.
    Pfitzner R; Scholtes I; Garas A; Tessone CJ; Schweitzer F
    Phys Rev Lett; 2013 May; 110(19):198701. PubMed ID: 23705746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating metrics in link streams.
    Simard F
    Soc Netw Anal Min; 2021; 11(1):51. PubMed ID: 34104260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graph transformation and shortest paths algorithms for finite Markov chains.
    Sharpe DJ; Wales DJ
    Phys Rev E; 2021 Jun; 103(6-1):063306. PubMed ID: 34271741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Betweenness centrality in a weighted network.
    Wang H; Hernandez JM; Van Mieghem P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046105. PubMed ID: 18517688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two betweenness centrality measures based on Randomized Shortest Paths.
    Kivimäki I; Lebichot B; Saramäki J; Saerens M
    Sci Rep; 2016 Feb; 6():19668. PubMed ID: 26838176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.