These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 26274275)

  • 1. Cylindrical Couette flow of a rarefied gas: Effect of a boundary condition on the inverted velocity profile.
    Kosuge S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013013. PubMed ID: 26274275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverted velocity profile in the cylindrical Couette flow of a rarefied gas.
    Aoki K; Yoshida H; Nakanishi T; Garcia AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016302. PubMed ID: 12935241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear stability of the cylindrical Couette flow of a rarefied gas.
    Yoshida H; Aoki K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021201. PubMed ID: 16605327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poiseuille-type flow of a rarefied gas between two parallel plates driven by a uniform external force.
    Aoki K; Takata S; Nakanishi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026315. PubMed ID: 11863661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance evaluation of Maxwell and Cercignani-Lampis gas-wall interaction models in the modeling of thermally driven rarefied gas transport.
    Liang T; Li Q; Ye W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013009. PubMed ID: 23944551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical derivation of slip boundary conditions for single-species gas and binary gas mixture.
    Zhang J; Luan P; Deng J; Tian P; Liang T
    Phys Rev E; 2021 Nov; 104(5-2):055103. PubMed ID: 34942694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slip velocity and velocity inversion in a cylindrical Couette flow.
    Kim S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036312. PubMed ID: 19392054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.
    Silva G; Semiao V
    Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrected second-order slip boundary condition for fluid flows in nanochannels.
    Zhang H; Zhang Z; Zheng Y; Ye H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066303. PubMed ID: 20866518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows.
    Kim SH; Pitsch H; Boyd ID
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026704. PubMed ID: 18352145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-order lattice Boltzmann models for wall-bounded flows at finite Knudsen numbers.
    Feuchter C; Schleifenbaum W
    Phys Rev E; 2016 Jul; 94(1-1):013304. PubMed ID: 27575233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow.
    Tang GH; Gu XJ; Barber RW; Emerson DR; Zhang YH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026706. PubMed ID: 18850972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slip-flow boundary condition for straight walls in the lattice Boltzmann model.
    Szalmás L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066710. PubMed ID: 16907026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Filter-matrix lattice Boltzmann model for microchannel gas flows.
    Zhuo C; Zhong C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053311. PubMed ID: 24329383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice Boltzmann models for nonequilibrium gas flows.
    Tang GH; Zhang YH; Emerson DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046701. PubMed ID: 18517753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Velocity inversion in nanochannel flow.
    Jung Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051203. PubMed ID: 17677046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lattice Boltzmann method with moment-based boundary conditions for rarefied flow in the slip regime.
    Mohammed S; Reis T
    Phys Rev E; 2021 Oct; 104(4-2):045309. PubMed ID: 34781458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonequilibrium kinetic boundary condition at the vapor-liquid interface of argon.
    Ishiyama T; Fujikawa S; Kurz T; Lauterborn W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042406. PubMed ID: 24229188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the lattice Boltzmann Bhatnagar-Gross-Krook no-slip boundary condition: ways to improve accuracy and stability.
    Verschaeve JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036703. PubMed ID: 19905242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.