These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 26274275)

  • 21. Higher order slip according to the linearized Boltzmann equation with general boundary conditions.
    Lorenzani S
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2228-36. PubMed ID: 21536569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling rarefied gas-solid surface interactions for Couette flow with different wall temperatures using an unsupervised machine learning technique.
    Mohammad Nejad S; Iype E; Nedea S; Frijns A; Smeulders D
    Phys Rev E; 2021 Jul; 104(1-2):015309. PubMed ID: 34412256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discrete unified gas kinetic scheme for all Knudsen number flows: low-speed isothermal case.
    Guo Z; Xu K; Wang R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033305. PubMed ID: 24125383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrodynamics, wall-slip, and normal-stress differences in rarefied granular Poiseuille flow.
    Gupta R; Alam M
    Phys Rev E; 2017 Feb; 95(2-1):022903. PubMed ID: 28297874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lattice Boltzmann simulation of rarefied gas flows in microchannels.
    Zhang Y; Qin R; Emerson DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):047702. PubMed ID: 15903829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical modeling of the sound propagation through a rarefied gas in a semi-infinite space on the basis of linearized kinetic equation.
    Sharipov F; Kalempa D
    J Acoust Soc Am; 2008 Oct; 124(4):1993-2001. PubMed ID: 19062839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Velocity boundary condition at solid walls in rarefied gas calculations.
    Lockerby DA; Reese JM; Emerson DR; Barber RW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):017303. PubMed ID: 15324210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling of Knudsen Layer Effects in the Micro-Scale Backward-Facing Step in the Slip Flow Regime.
    Bhagat A; Gijare H; Dongari N
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30759853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy accommodation coefficient extracted from acoustic resonator experiments.
    Sharipov F; Moldover MR
    J Vac Sci Technol A; 2016 Nov; 34(6):. PubMed ID: 28970648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of rarefaction in microflows between coaxial cylinders.
    Taheri P; Struchtrup H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066317. PubMed ID: 20365277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantifying the Knudsen force on heated microbeams: a compact model and direct comparison with measurements.
    Nabeth J; Chigullapalli S; Alexeenko AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066306. PubMed ID: 21797476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Velocity slip and temperature jump simulations by the three-dimensional thermal finite-difference lattice Boltzmann method.
    Watari M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066706. PubMed ID: 19658624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comment on "Heat transfer and fluid flow in microchannels and nanochannels at high Knudsen number using thermal lattice-Boltzmann method".
    Luo LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):048301; discussion 048302. PubMed ID: 22181320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disentangling the role of athermal walls on the Knudsen paradox in molecular and granular gases.
    Gupta R; Alam M
    Phys Rev E; 2018 Jan; 97(1-1):012912. PubMed ID: 29448368
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Asymptotic expansion and Padé approximants for acceleration-driven Poiseuille flow of a rarefied gas: Bulk hydrodynamics and rheology.
    Rongali R; Alam M
    Phys Rev E; 2018 Jul; 98(1-1):012115. PubMed ID: 30110855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved curved-boundary scheme for lattice Boltzmann simulation of microscale gas flow with second-order slip condition.
    Dai W; Wu H; Liu Z; Zhang S
    Phys Rev E; 2022 Feb; 105(2-2):025310. PubMed ID: 35291094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissipative particle dynamics simulation of flow generated by two rotating concentric cylinders: boundary conditions.
    Haber S; Filipovic N; Kojic M; Tsuda A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046701. PubMed ID: 17155206
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of a lattice Boltzmann method in a complex nanoflow.
    Suga K; Takenaka S; Ito T; Kaneda M; Kinjo T; Hyodo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016701. PubMed ID: 20866755
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical study of nonequilibrium gas flow in a microchannel with a ratchet surface.
    Zhu L; Guo Z
    Phys Rev E; 2017 Feb; 95(2-1):023113. PubMed ID: 28297865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.