BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26274389)

  • 1. Kapitza Resistance between Few-Layer Graphene and Water: Liquid Layering Effects.
    Alexeev D; Chen J; Walther JH; Giapis KP; Angelikopoulos P; Koumoutsakos P
    Nano Lett; 2015 Sep; 15(9):5744-9. PubMed ID: 26274389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X; Jiang P; Ouyang Y; Lu S; Ren W; Chen J
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kapitza resistance at water-graphene interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    J Chem Phys; 2020 Jun; 152(22):224703. PubMed ID: 32534537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain engineering of Kapitza resistance in few-layer graphene.
    Chen J; Walther JH; Koumoutsakos P
    Nano Lett; 2014 Feb; 14(2):819-25. PubMed ID: 24428130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces.
    Pham A; Barisik M; Kim B
    J Chem Phys; 2013 Dec; 139(24):244702. PubMed ID: 24387383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal resistance of nanoscopic liquid-liquid interfaces: dependence on chemistry and molecular architecture.
    Patel HA; Garde S; Keblinski P
    Nano Lett; 2005 Nov; 5(11):2225-31. PubMed ID: 16277458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Electrostatic Interactions on Kapitza Resistance in Hexagonal Boron Nitride-Water Interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    Langmuir; 2022 Jul; 38(29):8783-8793. PubMed ID: 35830549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoconfinement Effects on the Kapitza Resistance at Water-CNT Interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    Langmuir; 2021 Feb; 37(7):2355-2361. PubMed ID: 33570421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate coupling suppresses size dependence of thermal conductivity in supported graphene.
    Chen J; Zhang G; Li B
    Nanoscale; 2013 Jan; 5(2):532-6. PubMed ID: 23223896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Few-Layer Graphene-Based Nanofluids with Enhanced Thermal Conductivity.
    Hamze S; Berrada N; Cabaleiro D; Desforges A; Ghanbaja J; Gleize J; Bégin D; Michaux F; Maré T; Vigolo B; Estellé P
    Nanomaterials (Basel); 2020 Jun; 10(7):. PubMed ID: 32605237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Layer Number Dependence of Li(+) Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid-Electrolyte Interphase Evolution.
    Hui J; Burgess M; Zhang J; Rodríguez-López J
    ACS Nano; 2016 Apr; 10(4):4248-57. PubMed ID: 26943950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of hydrogen storage capacity of few-layer graphene.
    Wu CD; Fang TH; Lo JY; Feng YL
    J Mol Model; 2013 Sep; 19(9):3813-9. PubMed ID: 23798312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimodal Grain-Size Scaling of Thermal Transport in Polycrystalline Graphene from Large-Scale Molecular Dynamics Simulations.
    Fan Z; Hirvonen P; Pereira LFC; Ervasti MM; Elder KR; Donadio D; Harju A; Ala-Nissila T
    Nano Lett; 2017 Oct; 17(10):5919-5924. PubMed ID: 28877440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-Liquid Interface Thermal Resistance Affects the Evaporation Rate of Droplets from a Surface: A Study of Perfluorohexane on Chromium Using Molecular Dynamics and Continuum Theory.
    Han H; Schlawitschek C; Katyal N; Stephan P; Gambaryan-Roisman T; Leroy F; Müller-Plathe F
    Langmuir; 2017 May; 33(21):5336-5343. PubMed ID: 28492334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal transport across a substrate-thin-film interface: effects of film thickness and surface roughness.
    Liang Z; Sasikumar K; Keblinski P
    Phys Rev Lett; 2014 Aug; 113(6):065901. PubMed ID: 25148335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlocal thermal transport across embedded few-layer graphene sheets.
    Liu Y; Huxtable ST; Yang B; Sumpter BG; Qiao R
    J Phys Condens Matter; 2014 Dec; 26(50):502101. PubMed ID: 25393230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating thermal resistance at the solid-fluid interface through monolayer deposition.
    Hasan MR; Vo TQ; Kim B
    RSC Adv; 2019 Feb; 9(9):4948-4956. PubMed ID: 35514672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliably counting atomic planes of few-layer graphene (n > 4).
    Koh YK; Bae MH; Cahill DG; Pop E
    ACS Nano; 2011 Jan; 5(1):269-74. PubMed ID: 21138311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale interfacial interactions of graphene with polar and nonpolar liquids.
    Robinson BJ; Kay ND; Kolosov OV
    Langmuir; 2013 Jun; 29(25):7735-42. PubMed ID: 23713755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Kapitza resistance at fluid-solid interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    J Chem Phys; 2019 Nov; 151(19):194502. PubMed ID: 31757152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.