These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26274433)

  • 1. Violation of the Wiedemann-Franz Law in Hydrodynamic Electron Liquids.
    Principi A; Vignale G
    Phys Rev Lett; 2015 Jul; 115(5):056603. PubMed ID: 26274433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large violation of the Wiedemann-Franz law in Luttinger liquids.
    Garg A; Rasch D; Shimshoni E; Rosch A
    Phys Rev Lett; 2009 Aug; 103(9):096402. PubMed ID: 19792814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalously low electronic thermal conductivity in metallic vanadium dioxide.
    Lee S; Hippalgaonkar K; Yang F; Hong J; Ko C; Suh J; Liu K; Wang K; Urban JJ; Zhang X; Dames C; Hartnoll SA; Delaire O; Wu J
    Science; 2017 Jan; 355(6323):371-374. PubMed ID: 28126811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Electronic Thermal Conductivity of Graphene.
    Kim TY; Park CH; Marzari N
    Nano Lett; 2016 Apr; 16(4):2439-43. PubMed ID: 26907524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Photoenergy Harvesting and Extreme Thomson Effect in Hydrodynamic Electronic Systems.
    Andersen TI; Smith TB; Principi A
    Phys Rev Lett; 2019 Apr; 122(16):166802. PubMed ID: 31075009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restricted Wiedemann-Franz law and vanishing thermoelectric power in one-dimensional conductors.
    Kuroda MA; Leburton JP
    Phys Rev Lett; 2008 Dec; 101(25):256805. PubMed ID: 19113740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic violation of the Wiedemann-Franz law at a quantum critical point.
    Tanatar MA; Paglione J; Petrovic C; Taillefer L
    Science; 2007 Jun; 316(5829):1320-2. PubMed ID: 17540899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires.
    Völklein F; Reith H; Cornelius TW; Rauber M; Neumann R
    Nanotechnology; 2009 Aug; 20(32):325706. PubMed ID: 19620755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gross violation of the Wiedemann-Franz law in a quasi-one-dimensional conductor.
    Wakeham N; Bangura AF; Xu X; Mercure JF; Greenblatt M; Hussey NE
    Nat Commun; 2011 Jul; 2():396. PubMed ID: 21772267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Violation of the Wiedemann-Franz law at the Kondo breakdown quantum critical point.
    Kim KS; Pépin C
    Phys Rev Lett; 2009 Apr; 102(15):156404. PubMed ID: 19518660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Electrical Contact Resistance on Measurement of Thermal Conductivity and Wiedemann-Franz Law for Individual Metallic Nanowires.
    Wang J; Wu Z; Mao C; Zhao Y; Yang J; Chen Y
    Sci Rep; 2018 Mar; 8(1):4862. PubMed ID: 29559677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wiedemann-Franz Law for Molecular Hopping Transport.
    Craven GT; Nitzan A
    Nano Lett; 2020 Feb; 20(2):989-993. PubMed ID: 31951422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal resistivity and hydrodynamics of the degenerate electron fluid in antimony.
    Jaoui A; Fauqué B; Behnia K
    Nat Commun; 2021 Jan; 12(1):195. PubMed ID: 33420029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wiedemann-Franz Law for Massless Dirac Fermions with Implications for Graphene.
    Rycerz A
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34063902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. T-Square Dependence of the Electronic Thermal Resistivity of Metallic Strontium Titanate.
    Jiang S; Fauqué B; Behnia K
    Phys Rev Lett; 2023 Jul; 131(1):016301. PubMed ID: 37478431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal and electrical signatures of a hydrodynamic electron fluid in tungsten diphosphide.
    Gooth J; Menges F; Kumar N; Süβ V; Shekhar C; Sun Y; Drechsler U; Zierold R; Felser C; Gotsmann B
    Nat Commun; 2018 Oct; 9(1):4093. PubMed ID: 30291248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene.
    Crossno J; Shi JK; Wang K; Liu X; Harzheim A; Lucas A; Sachdev S; Kim P; Taniguchi T; Watanabe K; Ohki TA; Fong KC
    Science; 2016 Mar; 351(6277):1058-61. PubMed ID: 26912362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the Wiedemann-Franz ratio from the thermal hall conductivity: application to Cu and YBa2Cu3O6.95.
    Zhang Y; Ong NP; Xu ZA; Krishana K; Gagnon R; Taillefer L
    Phys Rev Lett; 2000 Mar; 84(10):2219-22. PubMed ID: 11017248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal conductivity of a granular metal.
    Tripathi V; Loh YL
    Phys Rev Lett; 2006 Feb; 96(4):046805. PubMed ID: 16486870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How To Probe the Limits of the Wiedemann-Franz Law at Nanoscale.
    Bürkle M; Asai Y
    Nano Lett; 2018 Nov; 18(11):7358-7361. PubMed ID: 30336053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.