BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 26274452)

  • 1. Protein Thermal Conductivity Measured in the Solid State Reveals Anharmonic Interactions of Vibrations in a Fractal Structure.
    Foley BM; Gorham CS; Duda JC; Cheaito R; Szwejkowski CJ; Constantin C; Kaehr B; Hopkins PE
    J Phys Chem Lett; 2014 Apr; 5(7):1077-82. PubMed ID: 26274452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains.
    Pang XF
    Prog Biophys Mol Biol; 2012 Jan; 108(1-2):1-46. PubMed ID: 21951575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractal-like tree networks reducing the thermal conductivity.
    Yu B; Li B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066302. PubMed ID: 16906971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical Study on the Influence of the Anharmonic Effect on the Ionic Conductivity and Thermal Stability of 8 mol% Yttria-Stabilized Zirconia Solid Electrolyte Material.
    Gao J; Zhao X; Cheng Z; Tian L
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thickness-Independent Vibrational Thermal Conductance across Confined Solid-Solution Thin Films.
    Giri A; Cheaito R; Gaskins JT; Mimura T; Brown-Shaklee HJ; Medlin DL; Ihlefeld JF; Hopkins PE
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12541-12549. PubMed ID: 33663216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling, calculating, and analyzing multidimensional vibrational spectroscopies.
    Tanimura Y; Ishizaki A
    Acc Chem Res; 2009 Sep; 42(9):1270-9. PubMed ID: 19441802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of chemical ordering on the thermal conductivity and electronic relaxation in FePt thin films in heat assisted magnetic recording applications.
    Giri A; Wee SH; Jain S; Hellwig O; Hopkins PE
    Sci Rep; 2016 Aug; 6():32077. PubMed ID: 27561236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal conductivity of highly porous Si in the temperature range 4.2 to 20 K.
    Valalaki K; Nassiopoulou AG
    Nanoscale Res Lett; 2014; 9(1):318. PubMed ID: 25114631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The origin of the boson peak and thermal conductivity plateau in low-temperature glasses.
    Lubchenko V; Wolynes PG
    Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1515-8. PubMed ID: 12578972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instrumentation of broadband frequency domain thermoreflectance for measuring thermal conductivity accumulation functions.
    Regner KT; Majumdar S; Malen JA
    Rev Sci Instrum; 2013 Jun; 84(6):064901. PubMed ID: 23822366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal conductance of hydrophilic and hydrophobic interfaces.
    Ge Z; Cahill DG; Braun PV
    Phys Rev Lett; 2006 May; 96(18):186101. PubMed ID: 16712374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical Fractal Model for Calculating Effective Thermal Conductivity of the Fibrous Porous Materials.
    Kan AK; Cao D; Zhang XL
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3200-5. PubMed ID: 26353563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal conductivity and its relation to atomic structure for symmetrical tilt grain boundaries in silicon.
    Hickman J; Mishin Y
    Phys Rev Mater; 2020; 4(3):. PubMed ID: 33062914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wide-range continuous tuning of the thermal conductivity of La
    Zhang Y; Postiglione WM; Xie R; Zhang C; Zhou H; Chaturvedi V; Heltemes K; Zhou H; Feng T; Leighton C; Wang X
    Nat Commun; 2023 May; 14(1):2626. PubMed ID: 37149614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method.
    Liu J; Zhu J; Tian M; Gu X; Schmidt A; Yang R
    Rev Sci Instrum; 2013 Mar; 84(3):034902. PubMed ID: 23556838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal transport coefficients for liquid and glassy water computed from a harmonic aqueous glass.
    Yu X; Leitner DM
    J Chem Phys; 2005 Sep; 123(10):104503. PubMed ID: 16178606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of the transport properties of carbon dioxide. II. Thermal conductivity and thermomagnetic effects.
    Bock S; Bich E; Vogel E; Dickinson AS; Vesovic V
    J Chem Phys; 2004 May; 120(17):7987-97. PubMed ID: 15267716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of copper in the thermal conductivity of thermoelectric oxychalcogenides: do lone pairs matter?
    Vaqueiro P; Al Orabi RA; Luu SD; Guélou G; Powell AV; Smith RI; Song JP; Wee D; Fornari M
    Phys Chem Chem Phys; 2015 Dec; 17(47):31735-40. PubMed ID: 26559565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemically tunable thermal conductivity of lithium cobalt oxide.
    Cho J; Losego MD; Zhang HG; Kim H; Zuo J; Petrov I; Cahill DG; Braun PV
    Nat Commun; 2014 Jun; 5():4035. PubMed ID: 24892640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of the Thermal Conductivity of Unfrozen and Frozen Food Materials by a Steady State Method with Coaxial Dual-cylinder Apparatus.
    Pongsawatmanit R; Miyawaki O; Yano T
    Biosci Biotechnol Biochem; 1993 Jan; 57(7):1072-6. PubMed ID: 27280988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.