These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26274456)

  • 1. CdSeS Nanowires: Compositionally Controlled Band Gap and Exciton Dynamics.
    Kim JP; Christians JA; Choi H; Krishnamurthy S; Kamat PV
    J Phys Chem Lett; 2014 Apr; 5(7):1103-9. PubMed ID: 26274456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Origin of the Band Gap Anomaly of Quaternary Alloy Cd(x)Zn(1-x)S(y)Se(1-y) Nanowires, Nanobelts, and Nanosheets in the Visible Spectrum.
    Kwon SJ; Jeong HM; Jung K; Ko DH; Ko H; Han IK; Kim GT; Park JG
    ACS Nano; 2015 May; 9(5):5486-99. PubMed ID: 25897466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Band-gap engineering of semiconductor nanowires through composition modulation.
    Liang Y; Zhai L; Zhao X; Xu D
    J Phys Chem B; 2005 Apr; 109(15):7120-3. PubMed ID: 16851811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elimination of hole-surface overlap in graded CdS(x)Se(1-x) nanocrystals revealed by ultrafast fluorescence upconversion spectroscopy.
    Keene JD; McBride JR; Orfield NJ; Rosenthal SJ
    ACS Nano; 2014 Oct; 8(10):10665-73. PubMed ID: 25203834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of surface passivation on electronic energy relaxation dynamics of CdSe and CdSe/CdS nanocrystals studied using visible and near infrared transient absorption spectroscopy.
    Yi C; Knappenberger KL
    Nanoscale; 2015 Mar; 7(13):5884-91. PubMed ID: 25761249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial bandgap engineering along single alloy nanowires.
    Gu F; Yang Z; Yu H; Xu J; Wang P; Tong L; Pan A
    J Am Chem Soc; 2011 Feb; 133(7):2037-9. PubMed ID: 21271702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast relaxation dynamics of 5,10,15,20-meso-tetrakis pentafluorophenyl porphyrin studied by fluorescence up-conversion and transient absorption spectroscopy.
    Kumar PH; Venkatesh Y; Siva D; Ramakrishna B; Bangal PR
    J Phys Chem A; 2015 Feb; 119(8):1267-78. PubMed ID: 25633537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exciton annihilation and dissociation dynamics in group II-V Cd3P2 quantum dots.
    Wu K; Liu Z; Zhu H; Lian T
    J Phys Chem A; 2013 Jul; 117(29):6362-72. PubMed ID: 23611312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double heterojunction nanowire photocatalysts for hydrogen generation.
    Tongying P; Vietmeyer F; Aleksiuk D; Ferraudi GJ; Krylova G; Kuno M
    Nanoscale; 2014 Apr; 6(8):4117-24. PubMed ID: 24604246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature and composition dependent excitonic luminescence and exciton-phonon coupling in CdSeS nanocrystals.
    Wu W; Yu D; Ye HA; Gao Y; Chang Q
    Nanoscale Res Lett; 2012 Jun; 7(1):301. PubMed ID: 22682098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast Exciton Dynamics in Silicon Nanowires.
    Wheeler DA; Huang JA; Newhouse RJ; Zhang WF; Lee ST; Zhang JZ
    J Phys Chem Lett; 2012 Mar; 3(6):766-71. PubMed ID: 26286288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-quality ultralong Bi2S3 nanowires: structure, growth, and properties.
    Yu Y; Jin CH; Wang RH; Chen Q; Peng LM
    J Phys Chem B; 2005 Oct; 109(40):18772-6. PubMed ID: 16853415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-temperature synthesis of ZnO/CdS hierarchical nanostructure for photovoltaic application.
    Chen XY; Ling T; Du XW
    Nanoscale; 2012 Sep; 4(18):5602-7. PubMed ID: 22743779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface ion transfer growth of ternary CdS(1-x)Se(x) quantum dots and their electron transport modulation.
    Chen Z; Peng W; Zhang K; Zhang J; Yanagida M; Han L
    Nanoscale; 2012 Dec; 4(24):7690-7. PubMed ID: 23123801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guided CdSe Nanowires Parallelly Integrated into Fast Visible-Range Photodetectors.
    Shalev E; Oksenberg E; Rechav K; Popovitz-Biro R; Joselevich E
    ACS Nano; 2017 Jan; 11(1):213-220. PubMed ID: 28032987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathway of Room-Temperature Formation of CdSeS Magic-Size Clusters from Mixtures of CdSe and CdS Samples.
    Xue J; Wang S; Wang Z; Luan C; Li Y; Chen X; Yu K
    Small; 2024 Apr; ():e2402121. PubMed ID: 38634202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes.
    Wu K; Song N; Liu Z; Zhu H; Rodríguez-Córdoba W; Lian T
    J Phys Chem A; 2013 Aug; 117(32):7561-70. PubMed ID: 23639000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tandem-layered quantum dot solar cells: tuning the photovoltaic response with luminescent ternary cadmium chalcogenides.
    Santra PK; Kamat PV
    J Am Chem Soc; 2013 Jan; 135(2):877-85. PubMed ID: 23249280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast transient absorption studies of hematite nanoparticles: the effect of particle shape on exciton dynamics.
    Fitzmorris BC; Patete JM; Smith J; Mascorro X; Adams S; Wong SS; Zhang JZ
    ChemSusChem; 2013 Oct; 6(10):1907-14. PubMed ID: 24058060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.