These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26274461)

  • 41. Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands.
    Guyot-Sionnest P; Wehrenberg B; Yu D
    J Chem Phys; 2005 Aug; 123(7):074709. PubMed ID: 16229612
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tunable Infrared Phosphors Using Cu Doping in Semiconductor Nanocrystals: Surface Electronic Structure Evaluation.
    Grandhi GK; Viswanatha R
    J Phys Chem Lett; 2013 Feb; 4(3):409-15. PubMed ID: 26281732
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ray-trace simulation of CuInS(Se)₂ quantum dot based luminescent solar concentrators.
    Hu X; Kang R; Zhang Y; Deng L; Zhong H; Zou B; Shi LJ
    Opt Express; 2015 Jul; 23(15):A858-67. PubMed ID: 26367686
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis and characterizations of ultra-small ZnS and Zn(1-x)Fe(x)S quantum dots in aqueous media and spectroscopic study of their interactions with bovine serum albumin.
    Khani O; Rajabi HR; Yousefi MH; Khosravi AA; Jannesari M; Shamsipur M
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jul; 79(2):361-9. PubMed ID: 21482179
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Effect of hole transporting materials on photoluminescence of CdSe core/shell quantum dots].
    Qu YQ; Zhang QB; Jing PT; Sun YJ; Zeng QH; Zhang YL; Kong XG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3204-7. PubMed ID: 20210132
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Historical Development of Infrared Photodetection Based on Intraband Transitions.
    Hao Q; Zhao X; Tang X; Chen M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837192
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthetic Control of Exciton Behavior in Colloidal Quantum Dots.
    Pu C; Qin H; Gao Y; Zhou J; Wang P; Peng X
    J Am Chem Soc; 2017 Mar; 139(9):3302-3311. PubMed ID: 28170239
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Surface-tunable photoluminescence from block copolymer-stabilized cadmium sulfide quantum dots.
    Wang CW; Moffitt MG
    Langmuir; 2004 Dec; 20(26):11784-96. PubMed ID: 15595812
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Carrier dynamics in highly quantum-confined, colloidal indium antimonide nanocrystals.
    Chang AY; Liu W; Talapin DV; Schaller RD
    ACS Nano; 2014 Aug; 8(8):8513-9. PubMed ID: 25106893
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electroabsorption by 0D, 1D, and 2D nanocrystals: a comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets.
    Achtstein AW; Prudnikau AV; Ermolenko MV; Gurinovich LI; Gaponenko SV; Woggon U; Baranov AV; Leonov MY; Rukhlenko ID; Fedorov AV; Artemyev MV
    ACS Nano; 2014 Aug; 8(8):7678-86. PubMed ID: 25107475
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rainbow Emission from an Atomic Transition in Doped Quantum Dots.
    Hazarika A; Pandey A; Sarma DD
    J Phys Chem Lett; 2014 Jul; 5(13):2208-13. PubMed ID: 26279535
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Toward Bright Mid-Infrared Emitters: Thick-Shell n-Type HgSe/CdS Nanocrystals.
    Kamath A; Melnychuk C; Guyot-Sionnest P
    J Am Chem Soc; 2021 Nov; 143(46):19567-19575. PubMed ID: 34752062
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A quantum dot in topological insulator nanofilm.
    Herath TM; Hewageegana P; Apalkov V
    J Phys Condens Matter; 2014 Mar; 26(11):115302. PubMed ID: 24590177
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Colloidal InSb nanocrystals.
    Liu W; Chang AY; Schaller RD; Talapin DV
    J Am Chem Soc; 2012 Dec; 134(50):20258-61. PubMed ID: 23198950
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells.
    Mendes MJ; Hernández E; López E; García-Linares P; Ramiro I; Artacho I; Antolín E; Tobías I; Martí A; Luque A
    Nanotechnology; 2013 Aug; 24(34):345402. PubMed ID: 23912379
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Revealing the underlying absorption and emission mechanism of nitrogen doped graphene quantum dots.
    Niu X; Li Y; Shu H; Wang J
    Nanoscale; 2016 Nov; 8(46):19376-19382. PubMed ID: 27845798
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Different valence Sn doping - A simple way to detect oxygen concentration variation of ZnO quantum dots synthesized under ultrasonic irradiation.
    Yang W; Zhang B; Zhang Q; Wang L; Song B; Wu F; Wong CP
    Ultrason Sonochem; 2017 Sep; 38():29-37. PubMed ID: 28633829
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Europium doped In(Zn)P/ZnS colloidal quantum dots.
    Thuy UT; Maurice A; Liem NQ; Reiss P
    Dalton Trans; 2013 Sep; 42(35):12606-10. PubMed ID: 23609198
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles.
    Debnath R; Tang J; Barkhouse DA; Wang X; Pattantyus-Abraham AG; Brzozowski L; Levina L; Sargent EH
    J Am Chem Soc; 2010 May; 132(17):5952-3. PubMed ID: 20387887
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Energy relaxation in CdSe nanocrystals: the effects of morphology and film preparation.
    Spann BT; Chen L; Ruan X; Xu X
    Opt Express; 2013 Jan; 21 Suppl 1():A15-22. PubMed ID: 23389266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.