These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 26274465)

  • 1. Size-Dependent Plasmonic Resonances from Large-Scale Quantum Simulations.
    Xiang H; Zhang X; Neuhauser D; Lu G
    J Phys Chem Lett; 2014 Apr; 5(7):1163-9. PubMed ID: 26274465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angular-momentum-dependent orbital-free density functional theory.
    Ke Y; Libisch F; Xia J; Wang LW; Carter EA
    Phys Rev Lett; 2013 Aug; 111(6):066402. PubMed ID: 23971595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum mechanical origin of the plasmon: from molecular systems to nanoparticles.
    Guidez EB; Aikens CM
    Nanoscale; 2014 Oct; 6(20):11512-27. PubMed ID: 25163494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres.
    Monreal RC; Antosiewicz TJ; Apell SP
    J Phys Chem Lett; 2015 May; 6(10):1847-53. PubMed ID: 26263259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum sized gold nanoclusters with atomic precision.
    Qian H; Zhu M; Wu Z; Jin R
    Acc Chem Res; 2012 Sep; 45(9):1470-9. PubMed ID: 22720781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can orbital-free density functional theory simulate molecules?
    Xia J; Huang C; Shin I; Carter EA
    J Chem Phys; 2012 Feb; 136(8):084102. PubMed ID: 22380027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orbital-Free Density Functional Theory: An Attractive Electronic Structure Method for Large-Scale First-Principles Simulations.
    Mi W; Luo K; Trickey SB; Pavanello M
    Chem Rev; 2023 Nov; 123(21):12039-12104. PubMed ID: 37870767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum plasmonics: optical properties and tunability of metallic nanorods.
    Zuloaga J; Prodan E; Nordlander P
    ACS Nano; 2010 Sep; 4(9):5269-76. PubMed ID: 20698558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable Size Dependence of Quantum Plasmon of Charged Gold Nanoparticles.
    Ma S; Yang DJ; Ding SJ; Liu J; Wang W; Wu ZY; Liu XD; Zhou L; Wang QQ
    Phys Rev Lett; 2021 Apr; 126(17):173902. PubMed ID: 33988417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A generalized non-local optical response theory for plasmonic nanostructures.
    Mortensen NA; Raza S; Wubs M; Søndergaard T; Bozhevolnyi SI
    Nat Commun; 2014 May; 5():3809. PubMed ID: 24787630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum plasmon resonances of individual metallic nanoparticles.
    Scholl JA; Koh AL; Dionne JA
    Nature; 2012 Mar; 483(7390):421-7. PubMed ID: 22437611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities.
    Faucheaux JA; Stanton AL; Jain PK
    J Phys Chem Lett; 2014 Mar; 5(6):976-85. PubMed ID: 26270976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances.
    Peng P; Liu YC; Xu D; Cao QT; Lu G; Gong Q; Xiao YF
    Phys Rev Lett; 2017 Dec; 119(23):233901. PubMed ID: 29286676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface chemistry: a non-negligible parameter in determining optical properties of small colloidal metal nanoparticles.
    Sun Y; Gray SK; Peng S
    Phys Chem Chem Phys; 2011 Jul; 13(25):11814-26. PubMed ID: 21611673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical tuning of a quantum plasmonic resonance.
    Liu X; Kang JH; Yuan H; Park J; Kim SJ; Cui Y; Hwang HY; Brongersma ML
    Nat Nanotechnol; 2017 Sep; 12(9):866-870. PubMed ID: 28604706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embedded correlated wavefunction schemes: theory and applications.
    Libisch F; Huang C; Carter EA
    Acc Chem Res; 2014 Sep; 47(9):2768-75. PubMed ID: 24873211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overcoming the barrier of orbital-free density functional theory for molecular systems using deep learning.
    Zhang H; Liu S; You J; Liu C; Zheng S; Lu Z; Wang T; Zheng N; Shao B
    Nat Comput Sci; 2024 Mar; 4(3):210-223. PubMed ID: 38467870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projected Dipole Model for Quantum Plasmonics.
    Yan W; Wubs M; Asger Mortensen N
    Phys Rev Lett; 2015 Sep; 115(13):137403. PubMed ID: 26451583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon Couplings from Subsystem Time-Dependent Density Functional Theory.
    Giannone G; Śmiga S; D'Agostino S; Fabiano E; Della Sala F
    J Phys Chem A; 2021 Aug; 125(33):7246-7259. PubMed ID: 34403247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced von Weizsäcker Wang-Govind-Carter kinetic energy density functional for semiconductors.
    Shin I; Carter EA
    J Chem Phys; 2014 May; 140(18):18A531. PubMed ID: 24832339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.