BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26274482)

  • 1. Resolving Discrepancies in the Measurements of the Interfacial Tension for the CO2 + H2O Mixture by Computer Simulation.
    Müller EA; Mejía A
    J Phys Chem Lett; 2014 Apr; 5(7):1267-71. PubMed ID: 26274482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAFT-γ force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide.
    Avendaño C; Lafitte T; Galindo A; Adjiman CS; Jackson G; Müller EA
    J Phys Chem B; 2011 Sep; 115(38):11154-69. PubMed ID: 21815624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial multiple criticality and phase equilibria: an investigation of the PC-SAFT approach.
    Yelash L; Müller M; Paul W; Binder K
    Phys Chem Chem Phys; 2005 Nov; 7(21):3728-32. PubMed ID: 16358021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force-field parameters from the SAFT-γ equation of state for use in coarse-grained molecular simulations.
    Müller EA; Jackson G
    Annu Rev Chem Biomol Eng; 2014; 5():405-27. PubMed ID: 24702297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SAFT-γ force field for the simulation of molecular fluids: 2. Coarse-grained models of greenhouse gases, refrigerants, and long alkanes.
    Avendaño C; Lafitte T; Adjiman CS; Galindo A; Müller EA; Jackson G
    J Phys Chem B; 2013 Mar; 117(9):2717-33. PubMed ID: 23311931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial properties of water/CO2: a comprehensive description through a Gradient Theory-SAFT-VR Mie approach.
    Lafitte T; Mendiboure B; Piñeiro MM; Bessières D; Miqueu C
    J Phys Chem B; 2010 Sep; 114(34):11110-6. PubMed ID: 20698517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coarse-Graining the Liquid-Liquid Interfaces with the MARTINI Force Field: How Is the Interfacial Tension Reproduced?
    Ndao M; Devémy J; Ghoufi A; Malfreyt P
    J Chem Theory Comput; 2015 Aug; 11(8):3818-28. PubMed ID: 26574463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density functional theory for the prediction of interfacial properties of molecular fluids within the SAFT-γ coarse-grained approach.
    Algaba J; Mendiboure B; Gómez-Álvarez P; Blas FJ
    RSC Adv; 2022 Jun; 12(29):18821-18833. PubMed ID: 35873311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular insights into fluid-solid interfacial tensions in water + gas + solid systems at various temperatures and pressures.
    Yang Y; Wan J; Shang X; Sun S
    J Chem Phys; 2023 Sep; 159(9):. PubMed ID: 37655769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A global investigation of phase equilibria using the perturbed-chain statistical-associating-fluid-theory approach.
    Yelash L; Müller M; Paul W; Binder K
    J Chem Phys; 2005 Jul; 123(1):014908. PubMed ID: 16035870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Predictions of the Interfacial Tensions of Liquid-Liquid Interfaces through Atomistic and Coarse Grained Models.
    Neyt JC; Wender A; Lachet V; Ghoufi A; Malfreyt P
    J Chem Theory Comput; 2014 May; 10(5):1887-99. PubMed ID: 26580519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On interfacial properties of tetrahydrofuran: Atomistic and coarse-grained models from molecular dynamics simulation.
    Garrido JM; Algaba J; Míguez JM; Mendiboure B; Moreno-Ventas Bravo AI; Piñeiro MM; Blas FJ
    J Chem Phys; 2016 Apr; 144(14):144702. PubMed ID: 27083740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial tension and wettability in water-carbon dioxide systems: experiments and self-consistent field modeling.
    Banerjee S; Hassenklöver E; Kleijn JM; Cohen Stuart MA; Leermakers FA
    J Phys Chem B; 2013 Jul; 117(28):8524-35. PubMed ID: 23834700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the Interfacial Behavior of Type IIIa Binary Mixtures Along the Three-Phase Line Employing Molecular Thermodynamics.
    Alonso G; Chaparro G; Cartes M; Müller EA; Mejía A
    Molecules; 2020 Mar; 25(7):. PubMed ID: 32218362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting mixture phase equilibria and critical behavior using the SAFT-VRX approach.
    Sun L; Zhao H; Kiselev SB; McCabe C
    J Phys Chem B; 2005 May; 109(18):9047-58. PubMed ID: 16852077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a fused-sphere SAFT-γ Mie force field for poly(vinyl alcohol) and poly(ethylene).
    Walker CC; Genzer J; Santiso EE
    J Chem Phys; 2019 Jan; 150(3):034901. PubMed ID: 30660157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extension of the SAFT-VR Mie EoS To Model Homonuclear Rings and Its Parametrization Based on the Principle of Corresponding States.
    Müller EA; Mejía A
    Langmuir; 2017 Oct; 33(42):11518-11529. PubMed ID: 28602088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An examination of the ternary methane + carbon dioxide + water phase diagram using the SAFT-VR approach.
    Míguez JM; dos Ramos MC; Piñeiro MM; Blas FJ
    J Phys Chem B; 2011 Aug; 115(31):9604-17. PubMed ID: 21711035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. I. Homogeneous fluids.
    Ghobadi AF; Elliott JR
    J Chem Phys; 2013 Dec; 139(23):234104. PubMed ID: 24359349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An accurate density functional theory for the vapor-liquid interface of chain molecules based on the statistical associating fluid theory for potentials of variable range for Mie chainlike fluids.
    Algaba J; Míguez JM; Mendiboure B; Blas FJ
    Phys Chem Chem Phys; 2019 Jun; 21(22):11937-11948. PubMed ID: 31134241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.