BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 26274485)

  • 1. Atom-Level Understanding of the Sodiation Process in Silicon Anode Material.
    Jung SC; Jung DS; Choi JW; Han YK
    J Phys Chem Lett; 2014 Apr; 5(7):1283-8. PubMed ID: 26274485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicon as the Anode Material for Multivalent-Ion Batteries: A First-Principles Dynamics Study.
    Lee S; Ko M; Jung SC; Han YK
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55746-55755. PubMed ID: 33263978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes.
    Wang J; Meng X; Fan X; Zhang W; Zhang H; Wang C
    ACS Nano; 2015 Jun; 9(6):6576-86. PubMed ID: 26014439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance.
    Li Z; Ding J; Mitlin D
    Acc Chem Res; 2015 Jun; 48(6):1657-65. PubMed ID: 26046961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast Sodiation of Single-Crystalline Sn Anodes.
    Choi YS; Byeon YW; Park JH; Seo JH; Ahn JP; Lee JC
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):560-568. PubMed ID: 29232106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study.
    Johari P; Qi Y; Shenoy VB
    Nano Lett; 2011 Dec; 11(12):5494-500. PubMed ID: 22077884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodiation and Desodiation via Helical Phosphorus Intermediates in High-Capacity Anodes for Sodium-Ion Batteries.
    Marbella LE; Evans ML; Groh MF; Nelson J; Griffith KJ; Morris AJ; Grey CP
    J Am Chem Soc; 2018 Jun; 140(25):7994-8004. PubMed ID: 29916704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Out-of-plane ion transport makes nitrogenated holey graphite a promising high-rate anode for both Li and Na ion batteries.
    Huang H; Wu HH; Chi C; Zhu J; Huang B; Zhang TY
    Nanoscale; 2019 Oct; 11(40):18758-18768. PubMed ID: 31591618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-Principles Dynamics Investigation of Germanium as an Anode Material in Multivalent-Ion Batteries.
    Kim C; Hwang U; Lee S; Han YK
    Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries.
    Yao Y; Huo K; Hu L; Liu N; Cha JJ; McDowell MT; Chu PK; Cui Y
    ACS Nano; 2011 Oct; 5(10):8346-51. PubMed ID: 21974912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vertically ordered Ni₃Si₂/Si nanorod arrays as anode materials for high-performance Li-ion batteries.
    Fan X; Zhang H; Du N; Wu P; Xu X; Li Y; Yang D
    Nanoscale; 2012 Sep; 4(17):5343-7. PubMed ID: 22814832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of the first charge of a Li-ion-Si-anode nanobattery.
    Galvez-Aranda DE; Ponce V; Seminario JM
    J Mol Model; 2017 Apr; 23(4):120. PubMed ID: 28303437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Sodium Storage in Rolled-Up Amorphous Si Nanomembranes.
    Huang S; Liu L; Zheng Y; Wang Y; Kong D; Zhang Y; Shi Y; Zhang L; Schmidt OG; Yang HY
    Adv Mater; 2018 May; 30(20):e1706637. PubMed ID: 29603455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glassy Metal Alloy Nanofiber Anodes Employing Graphene Wrapping Layer: Toward Ultralong-Cycle-Life Lithium-Ion Batteries.
    Jung JW; Ryu WH; Shin J; Park K; Kim ID
    ACS Nano; 2015 Jul; 9(7):6717-27. PubMed ID: 26028125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boron-doped graphene as a promising anode for Na-ion batteries.
    Ling C; Mizuno F
    Phys Chem Chem Phys; 2014 Jun; 16(22):10419-24. PubMed ID: 24760182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembling Si
    Younis U; Muhammad I; Wu W; Ahmed S; Sun Q; Jena P
    Nanoscale; 2020 Oct; 12(37):19367-19374. PubMed ID: 32945313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SnSe alloy as a promising anode material for Na-ion batteries.
    Kim Y; Kim Y; Park Y; Jo YN; Kim YJ; Choi NS; Lee KT
    Chem Commun (Camb); 2015 Jan; 51(1):50-3. PubMed ID: 25360450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing the Simultaneous Effects of Conductivity and Amorphous Nature of Atomic-Layer-Deposited Double-Anion-Based Zinc Oxysulfide as Superior Anodes in Na-Ion Batteries.
    Sinha S; Didwal PN; Nandi DK; Verma R; Cho JY; Kim SH; Park CJ; Heo J
    Small; 2019 Sep; 15(37):e1900595. PubMed ID: 31373770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical investigation of the use of nanocages with an adsorbed halogen atom as anode materials in metal-ion batteries.
    Razavi R; Abrishamifar SM; Rajaei GE; Kahkha MRR; Najafi M
    J Mol Model; 2018 Feb; 24(3):64. PubMed ID: 29468439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.