These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 26274485)

  • 21. Caramel popcorn shaped silicon particle with carbon coating as a high performance anode material for Li-ion batteries.
    He M; Sa Q; Liu G; Wang Y
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11152-8. PubMed ID: 24111737
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Melt-Spun Fe-Sb Intermetallic Alloy Anode for Performance Enhanced Sodium-Ion Batteries.
    Edison E; Sreejith S; Madhavi S
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39399-39406. PubMed ID: 29090906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Considering Critical Factors of Li-rich Cathode and Si Anode Materials for Practical Li-ion Cell Applications.
    Ko M; Oh P; Chae S; Cho W; Cho J
    Small; 2015 Sep; 11(33):4058-73. PubMed ID: 26108922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries.
    Zhou M; Cai T; Pu F; Chen H; Wang Z; Zhang H; Guan S
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3449-55. PubMed ID: 23527898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An amorphous Si material with a sponge-like structure as an anode for Li-ion and Na-ion batteries.
    Han Y; Lin N; Xu T; Li T; Tian J; Zhu Y; Qian Y
    Nanoscale; 2018 Feb; 10(7):3153-3158. PubMed ID: 29387853
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF.
    Ostadhossein A; Cubuk ED; Tritsaris GA; Kaxiras E; Zhang S; van Duin AC
    Phys Chem Chem Phys; 2015 Feb; 17(5):3832-40. PubMed ID: 25559797
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amorphous Si
    Hur J
    Phys Chem Chem Phys; 2021 Mar; 23(9):5571-5577. PubMed ID: 33651071
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of hierarchically porous SnO(2) microspheres and performance evaluation as li-ion battery anode by using different binders.
    Gurunathan P; Ette PM; Ramesha K
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16556-64. PubMed ID: 25203752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive Study of Lithium Diffusion in Si/C-Layer and Si/C
    Lashani Zand A; Niksirat A; Sanaee Z; Pourfath M
    ACS Omega; 2023 Nov; 8(47):44698-44707. PubMed ID: 38046306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.
    Zhang Z; Wang Y; Tan Q; Li D; Chen Y; Zhong Z; Su F
    Nanoscale; 2014 Jan; 6(1):371-7. PubMed ID: 24201898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries.
    Chen Y; Zeng S; Qian J; Wang Y; Cao Y; Yang H; Ai X
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3508-12. PubMed ID: 24467155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isotropic Sodiation Behaviors of Ultrafast-Chargeable Tin Crystals.
    Byeon YW; Choi YS; Ahn JP; Lee JC
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41389-41397. PubMed ID: 30383971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First-Principles Study of Sodium Intercalation in Crystalline Na
    Arrieta U; Katcho NA; Arcelus O; Carrasco J
    Sci Rep; 2017 Jul; 7(1):5350. PubMed ID: 28706264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Si doped T6 carbon structure as an anode material for Li-ion batteries: An ab initio study.
    Rajkamal A; Kumar EM; Kathirvel V; Park N; Thapa R
    Sci Rep; 2016 Nov; 6():37822. PubMed ID: 27892532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Capacity retention behavior and morphology evolution of SixGe1-x nanoparticles as lithium-ion battery anode.
    Ge M; Kim S; Nie A; Shahbazian-Yassar R; Mecklenburg M; Lu Y; Fang X; Shen C; Rong J; Yi Park S; Suk Kim D; Young Kim J; Zhou C
    Nanotechnology; 2015 Jan; 26(25):255702. PubMed ID: 26023725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of uniform Si nanoparticles for high-performance Li-ion battery anodes.
    Sun L; Su T; Xu L; Du HB
    Phys Chem Chem Phys; 2016 Jan; 18(3):1521-5. PubMed ID: 26667776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The reaction mechanism of FeSb(2) as anode for sodium-ion batteries.
    Baggetto L; Hah HY; Johnson CE; Bridges CA; Johnson JA; Veith GM
    Phys Chem Chem Phys; 2014 May; 16(20):9538-45. PubMed ID: 24727860
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atomic Insight into the Lithium Storage and Diffusion Mechanism of SiO2/Al2O3 Electrodes of Lithium Ion Batteries: ReaxFF Reactive Force Field Modeling.
    Ostadhossein A; Kim SY; Cubuk ED; Qi Y; van Duin AC
    J Phys Chem A; 2016 Apr; 120(13):2114-27. PubMed ID: 26978039
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced Electrochemical Performance of Fe0.74Sn5@Reduced Graphene Oxide Nanocomposite Anodes for Both Li-Ion and Na-Ion Batteries.
    Xin FX; Tian HJ; Wang XL; Xu W; Zheng WG; Han WQ
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7912-9. PubMed ID: 25825935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.