These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 26274522)
1. Isolation of Neofusicoccum parvum from withered grapes: strain characterization, pathogenicity and its detrimental effects on passito wine aroma. Lorenzini M; Cappello MS; Zapparoli G J Appl Microbiol; 2015 Nov; 119(5):1335-44. PubMed ID: 26274522 [TBL] [Abstract][Full Text] [Related]
2. Polymorphism and phylogenetic species delimitation in filamentous fungi from predominant mycobiota in withered grapes. Lorenzini M; Cappello MS; Logrieco A; Zapparoli G Int J Food Microbiol; 2016 Dec; 238():56-62. PubMed ID: 27591387 [TBL] [Abstract][Full Text] [Related]
3. Occurrence and infection of Cladosporium, Fusarium, Epicoccum and Aureobasidium in withered rotten grapes during post-harvest dehydration. Lorenzini M; Zapparoli G Antonie Van Leeuwenhoek; 2015 Nov; 108(5):1171-80. PubMed ID: 26459338 [TBL] [Abstract][Full Text] [Related]
4. Filamentous fungi associated with natural infection of noble rot on withered grapes. Lorenzini M; Simonato B; Favati F; Bernardi P; Sbarbati A; Zapparoli G Int J Food Microbiol; 2018 May; 272():83-86. PubMed ID: 29550687 [TBL] [Abstract][Full Text] [Related]
5. Postharvest grape infection of Botrytis cinerea and its interactions with other moulds under withering conditions to produce noble-rotten grapes. Lorenzini M; Azzolini M; Tosi E; Zapparoli G J Appl Microbiol; 2013 Mar; 114(3):762-70. PubMed ID: 23163324 [TBL] [Abstract][Full Text] [Related]
6. Epiphytic bacteria from withered grapes and their antagonistic effects on grape-rotting fungi. Lorenzini M; Zapparoli G Int J Food Microbiol; 2020 Apr; 319():108505. PubMed ID: 31911210 [TBL] [Abstract][Full Text] [Related]
7. Characterization and pathogenicity of Alternaria spp. strains associated with grape bunch rot during post-harvest withering. Lorenzini M; Zapparoli G Int J Food Microbiol; 2014 Sep; 186():1-5. PubMed ID: 24974273 [TBL] [Abstract][Full Text] [Related]
8. Selection of Botrytis cinerea and Saccharomyces cerevisiae strains for the improvement and valorization of Italian passito style wines. Azzolini M; Tosi E; Faccio S; Lorenzini M; Torriani S; Zapparoli G FEMS Yeast Res; 2013 Sep; 13(6):540-52. PubMed ID: 23710966 [TBL] [Abstract][Full Text] [Related]
9. Yeast-like fungi and yeasts in withered grape carposphere: Characterization of Aureobasidium pullulans population and species diversity. Lorenzini M; Zapparoli G Int J Food Microbiol; 2019 Jan; 289():223-230. PubMed ID: 30391797 [TBL] [Abstract][Full Text] [Related]
10. Changes in chemical and sensory properties of Amarone wine produced by Penicillium infected grapes. Zapparoli G; Lorenzini M; Tosi E; Azzolini M; Slaghenaufi D; Ugliano M; Simonato B Food Chem; 2018 Oct; 263():42-50. PubMed ID: 29784326 [TBL] [Abstract][Full Text] [Related]
11. Description of a taxonomically undefined Sclerotiniaceae strain from withered rotten-grapes. Lorenzini M; Zapparoli G Antonie Van Leeuwenhoek; 2016 Feb; 109(2):197-205. PubMed ID: 26581438 [TBL] [Abstract][Full Text] [Related]
12. Post-harvest proteomics of grapes infected by Penicillium during withering to produce Amarone wine. Lorenzini M; Mainente F; Zapparoli G; Cecconi D; Simonato B Food Chem; 2016 May; 199():639-47. PubMed ID: 26776019 [TBL] [Abstract][Full Text] [Related]
13. H, C, and O Stable Isotope Ratios of Passito Wine. Perini M; Rolle L; Franceschi P; Simoni M; Torchio F; Di Martino V; Marianella RM; Gerbi V; Camin F J Agric Food Chem; 2015 Jul; 63(25):5851-7. PubMed ID: 25972047 [TBL] [Abstract][Full Text] [Related]
14. Correlating Noble Rot Infection of Garganega Withered Grapes with Key Molecules and Odorants of Botrytized Passito Wine. Simonato B; Lorenzini M; Cipriani M; Finato F; Zapparoli G Foods; 2019 Dec; 8(12):. PubMed ID: 31817273 [TBL] [Abstract][Full Text] [Related]
15. Identification of potential protein markers of noble rot infected grapes. Lorenzini M; Millioni R; Franchin C; Zapparoli G; Arrigoni G; Simonato B Food Chem; 2015 Jul; 179():170-4. PubMed ID: 25722151 [TBL] [Abstract][Full Text] [Related]
16. Melatonin treatment of pre-veraison grape berries to increase size and synchronicity of berries and modify wine aroma components. Meng JF; Xu TF; Song CZ; Yu Y; Hu F; Zhang L; Zhang ZW; Xi ZM Food Chem; 2015 Oct; 185():127-34. PubMed ID: 25952850 [TBL] [Abstract][Full Text] [Related]
17. Management of postharvest grape withering to optimise the aroma of the final wine: A case study on Amarone. Bellincontro A; Matarese F; D'Onofrio C; Accordini D; Tosi E; Mencarelli F Food Chem; 2016 Dec; 213():378-387. PubMed ID: 27451194 [TBL] [Abstract][Full Text] [Related]
18. Morphological and molecular characterisation of Diaporthe species associated with grapevine trunk disease in China. Dissanayake AJ; Liu M; Zhang W; Chen Z; Udayanga D; Chukeatirote E; Li X; Yan J; Hyde KD Fungal Biol; 2015 May; 119(5):283-94. PubMed ID: 25937058 [TBL] [Abstract][Full Text] [Related]
19. Postharvest Water Loss of Wine Grape: When, What and Why. Sanmartin C; Modesti M; Venturi F; Brizzolara S; Mencarelli F; Bellincontro A Metabolites; 2021 May; 11(5):. PubMed ID: 34069062 [TBL] [Abstract][Full Text] [Related]
20. 'Fortified' wines volatile composition: Effect of different postharvest dehydration conditions of wine grapes cv. Malvasia moscata (Vitis vinifera L.). Urcan DE; Giacosa S; Torchio F; Río Segade S; Raimondi S; Bertolino M; Gerbi V; Pop N; Rolle L Food Chem; 2017 Mar; 219():346-356. PubMed ID: 27765237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]