BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

878 related articles for article (PubMed ID: 26274587)

  • 21. Towards a high throughput impedimetric screening of chemosensitivity of cancer cells suspended in hydrogel and cultured in a paper substrate.
    Lei KF; Liu TK; Tsang NM
    Biosens Bioelectron; 2018 Feb; 100():355-360. PubMed ID: 28946107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer.
    Chitcholtan K; Asselin E; Parent S; Sykes PH; Evans JJ
    Exp Cell Res; 2013 Jan; 319(1):75-87. PubMed ID: 23022396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stratified 3D Microtumors as Organotypic Testing Platforms for Screening Pancreatic Cancer Therapies.
    Monteiro MV; Gaspar VM; Mendes L; Duarte IF; Mano JF
    Small Methods; 2021 May; 5(5):e2001207. PubMed ID: 34928079
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mask-free fabrication of a versatile microwell chip for multidimensional cellular analysis and drug screening.
    Yang W; Yu H; Li G; Wei F; Wang Y; Liu L
    Lab Chip; 2017 Dec; 17(24):4243-4252. PubMed ID: 29152631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using high throughput microtissue culture to study the difference in prostate cancer cell behavior and drug response in 2D and 3D co-cultures.
    Mosaad E; Chambers K; Futrega K; Clements J; Doran MR
    BMC Cancer; 2018 May; 18(1):592. PubMed ID: 29793440
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment.
    Yoshii Y; Furukawa T; Waki A; Okuyama H; Inoue M; Itoh M; Zhang MR; Wakizaka H; Sogawa C; Kiyono Y; Yoshii H; Fujibayashi Y; Saga T
    Biomaterials; 2015 May; 51():278-289. PubMed ID: 25771018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Microwell-mesh: A high-throughput 3D prostate cancer spheroid and drug-testing platform.
    Mosaad EO; Chambers KF; Futrega K; Clements JA; Doran MR
    Sci Rep; 2018 Jan; 8(1):253. PubMed ID: 29321576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High Content Screening Characterization of Head and Neck Squamous Cell Carcinoma Multicellular Tumor Spheroid Cultures Generated in 384-Well Ultra-Low Attachment Plates to Screen for Better Cancer Drug Leads.
    Kochanek SJ; Close DA; Johnston PA
    Assay Drug Dev Technol; 2019 Jan; 17(1):17-36. PubMed ID: 30592624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional spheroid organization of human salivary gland cells cultured on hydrogel-micropatterned nanofibrous microwells.
    Shin HS; Kook YM; Hong HJ; Kim YM; Koh WG; Lim JY
    Acta Biomater; 2016 Nov; 45():121-132. PubMed ID: 27592814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stromal cell-laden 3D hydrogel microwell arrays as tumor microenvironment model for studying stiffness dependent stromal cell-cancer interactions.
    Yue X; Nguyen TD; Zellmer V; Zhang S; Zorlutuna P
    Biomaterials; 2018 Jul; 170():37-48. PubMed ID: 29653286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Content Screening Comparison of Cancer Drug Accumulation and Distribution in Two-Dimensional and Three-Dimensional Culture Models of Head and Neck Cancer.
    Shan F; Close DA; Camarco DP; Johnston PA
    Assay Drug Dev Technol; 2018 Jan; 16(1):27-50. PubMed ID: 29215913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Micro-scaffold array chip for upgrading cell-based high-throughput drug testing to 3D using benchtop equipment.
    Li X; Zhang X; Zhao S; Wang J; Liu G; Du Y
    Lab Chip; 2014 Feb; 14(3):471-81. PubMed ID: 24287736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening.
    Lee JM; Park DY; Yang L; Kim EJ; Ahrberg CD; Lee KB; Chung BG
    Sci Rep; 2018 Nov; 8(1):17145. PubMed ID: 30464248
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel approach to producing uniform 3-D tumor spheroid constructs using ultrasound treatment.
    Karamikamkar S; Behzadfar E; Cheung KC
    Biomed Microdevices; 2018 Mar; 20(2):27. PubMed ID: 29511829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a magnetic 3D spheroid platform with potential application for high-throughput drug screening.
    Guo WM; Loh XJ; Tan EY; Loo JS; Ho VH
    Mol Pharm; 2014 Jul; 11(7):2182-9. PubMed ID: 24842574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spheroid-based 3D Cell Cultures Enable Personalized Therapy Testing and Drug Discovery in Head and Neck Cancer.
    Hagemann J; Jacobi C; Hahn M; Schmid V; Welz C; Schwenk-Zieger S; Stauber R; Baumeister P; Becker S
    Anticancer Res; 2017 May; 37(5):2201-2210. PubMed ID: 28476783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response.
    Monteiro MV; Gaspar VM; Ferreira LP; Mano JF
    Biomater Sci; 2020 Mar; 8(7):1855-1864. PubMed ID: 32091033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays.
    Raghavan S; Ward MR; Rowley KR; Wold RM; Takayama S; Buckanovich RJ; Mehta G
    Gynecol Oncol; 2015 Jul; 138(1):181-9. PubMed ID: 25913133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zoledronate Triggers Vδ2 T Cells to Destroy and Kill Spheroids of Colon Carcinoma: Quantitative Image Analysis of Three-Dimensional Cultures.
    Varesano S; Zocchi MR; Poggi A
    Front Immunol; 2018; 9():998. PubMed ID: 29867975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 44.