These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 26275099)

  • 21. A chemical kinetic basis for measuring translation initiation and elongation rates from ribosome profiling data.
    Sharma AK; Sormanni P; Ahmed N; Ciryam P; Friedrich UA; Kramer G; O'Brien EP
    PLoS Comput Biol; 2019 May; 15(5):e1007070. PubMed ID: 31120880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determinants of translation speed are randomly distributed across transcripts resulting in a universal scaling of protein synthesis times.
    Sharma AK; Ahmed N; O'Brien EP
    Phys Rev E; 2018 Feb; 97(2-1):022409. PubMed ID: 29548178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Translation complex profile sequencing to study the in vivo dynamics of mRNA-ribosome interactions during translation initiation, elongation and termination.
    Shirokikh NE; Archer SK; Beilharz TH; Powell D; Preiss T
    Nat Protoc; 2017 Apr; 12(4):697-731. PubMed ID: 28253237
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Post-termination ribosome interactions with the 5'UTR modulate yeast mRNA stability.
    Vilela C; Ramirez CV; Linz B; Rodrigues-Pousada C; McCarthy JE
    EMBO J; 1999 Jun; 18(11):3139-52. PubMed ID: 10357825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissecting eukaryotic translation and its control by ribosome density mapping.
    Arava Y; Boas FE; Brown PO; Herschlag D
    Nucleic Acids Res; 2005; 33(8):2421-32. PubMed ID: 15860778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comprehensive, quantitative, and genome-wide model of translation.
    Siwiak M; Zielenkiewicz P
    PLoS Comput Biol; 2010 Jul; 6(7):e1000865. PubMed ID: 20686685
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Translation drives mRNA quality control.
    Shoemaker CJ; Green R
    Nat Struct Mol Biol; 2012 Jun; 19(6):594-601. PubMed ID: 22664987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of Ribosome Profiling Data.
    Legrand C; Duc KD; Tuorto F
    Methods Mol Biol; 2022; 2428():133-156. PubMed ID: 35171478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of codon-specific translation by ribosome profiling.
    Kim Y; Eggers C; Shvetsova E; Kleemann L; Sin O; Leidel SA
    Methods Enzymol; 2021; 658():191-223. PubMed ID: 34517947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation.
    Pop C; Rouskin S; Ingolia NT; Han L; Phizicky EM; Weissman JS; Koller D
    Mol Syst Biol; 2014 Dec; 10(12):770. PubMed ID: 25538139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring Ribosome Positioning on Translating Transcripts with Ribosome Profiling.
    Spealman P; Wang H; May G; Kingsford C; McManus CJ
    Methods Mol Biol; 2016; 1358():71-97. PubMed ID: 26463378
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rate-limiting steps in yeast protein translation.
    Shah P; Ding Y; Niemczyk M; Kudla G; Plotkin JB
    Cell; 2013 Jun; 153(7):1589-601. PubMed ID: 23791185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of codon adaptation on codon-level and gene-level translation efficiency in vivo.
    Nakahigashi K; Takai Y; Shiwa Y; Wada M; Honma M; Yoshikawa H; Tomita M; Kanai A; Mori H
    BMC Genomics; 2014 Dec; 15(1):1115. PubMed ID: 25512115
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rationally designed, heterologous S. cerevisiae transcripts expose novel expression determinants.
    Ben-Yehezkel T; Atar S; Zur H; Diament A; Goz E; Marx T; Cohen R; Dana A; Feldman A; Shapiro E; Tuller T
    RNA Biol; 2015; 12(9):972-84. PubMed ID: 26176266
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding.
    Yu CH; Dang Y; Zhou Z; Wu C; Zhao F; Sachs MS; Liu Y
    Mol Cell; 2015 Sep; 59(5):744-54. PubMed ID: 26321254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulation and analysis of single-ribosome translation.
    Tinoco I; Wen JD
    Phys Biol; 2009 Jul; 6(2):025006. PubMed ID: 19571367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of ribosomes in mRNA translation under steady- and nonsteady-state conditions.
    Szavits-Nossan J; Evans MR
    Phys Rev E; 2020 Jun; 101(6-1):062404. PubMed ID: 32688522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate.
    Gorochowski TE; Ignatova Z; Bovenberg RA; Roubos JA
    Nucleic Acids Res; 2015 Mar; 43(6):3022-32. PubMed ID: 25765653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probabilistic Boolean Network Modelling and Analysis Framework for mRNA Translation.
    Zhao YB; Krishnan J
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(4):754-66. PubMed ID: 26390498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. No mercy for messages that mess with the ribosome.
    Clement SL; Lykke-Andersen J
    Nat Struct Mol Biol; 2006 Apr; 13(4):299-301. PubMed ID: 16715045
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.