These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 26275226)
1. Nontarget analysis of Murchison soluble organic matter by high-field NMR spectroscopy and FTICR mass spectrometry. Hertkorn N; Harir M; Schmitt-Kopplin P Magn Reson Chem; 2015 Sep; 53(9):754-68. PubMed ID: 26275226 [TBL] [Abstract][Full Text] [Related]
2. Analysis of the unresolved organic fraction in atmospheric aerosols with ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy: organosulfates as photochemical smog constituents. Schmitt-Kopplin P; Gelencsér A; Dabek-Zlotorzynska E; Kiss G; Hertkorn N; Harir M; Hong Y; Gebefügi I Anal Chem; 2010 Oct; 82(19):8017-26. PubMed ID: 20879800 [TBL] [Abstract][Full Text] [Related]
3. 13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites. Cronin JR; Pizzarello S; Frye JS Geochim Cosmochim Acta; 1987; 51():299-303. PubMed ID: 11542083 [TBL] [Abstract][Full Text] [Related]
4. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Schmitt-Kopplin P; Gabelica Z; Gougeon RD; Fekete A; Kanawati B; Harir M; Gebefuegi I; Eckel G; Hertkorn N Proc Natl Acad Sci U S A; 2010 Feb; 107(7):2763-8. PubMed ID: 20160129 [TBL] [Abstract][Full Text] [Related]
5. Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite. Yuen G; Blair N; Des Marais DJ; Chang S Nature; 1984 Jan 19-25; 307(5948):252-4. PubMed ID: 11536574 [TBL] [Abstract][Full Text] [Related]
6. Profiling Murchison Soluble Organic Matter for New Organic Compounds with APPI- and ESI-FT-ICR MS. Hertzog J; Naraoka H; Schmitt-Kopplin P Life (Basel); 2019 Jun; 9(2):. PubMed ID: 31174398 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive structure-selective characterization of dissolved organic matter by reducing molecular complexity and increasing analytical dimensions. Li Y; Harir M; Lucio M; Gonsior M; Koch BP; Schmitt-Kopplin P; Hertkorn N Water Res; 2016 Dec; 106():477-487. PubMed ID: 27770724 [TBL] [Abstract][Full Text] [Related]
8. Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite. Krishnamurthy RV; Epstein S; Cronin JR; Pizzarello S; Yuen GU Geochim Cosmochim Acta; 1992; 56():4045-58. PubMed ID: 11537206 [TBL] [Abstract][Full Text] [Related]
9. Multiple Cosmic Sources for Meteorite Macromolecules? Sephton MA; Watson JS; Meredith W; Love GD; Gilmour I; Snape CE Astrobiology; 2015 Oct; 15(10):779-86. PubMed ID: 26418568 [TBL] [Abstract][Full Text] [Related]
10. Chemical characterization of Titan's tholins: solubility, morphology and molecular structure revisited. Carrasco N; Schmitz-Afonso I; Bonnet JY; Quirico E; Thissen R; Dutuit O; Bagag A; Laprévote O; Buch A; Giulani A; Adandé G; Ouni F; Hadamcik E; Szopa C; Cernogora G J Phys Chem A; 2009 Oct; 113(42):11195-203. PubMed ID: 19827851 [TBL] [Abstract][Full Text] [Related]
11. Aliphatic hydrocarbons of the Murchison meteorite. Cronin JR; Pizzarello S Geochim Cosmochim Acta; 1990; 54():2859-68. PubMed ID: 11537195 [TBL] [Abstract][Full Text] [Related]
12. Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite. Epstein S; Krishnamurthy RV; Cronin JR; Pizzarello S; Yuen GU Nature; 1987 Apr; 326(6112):477-9. PubMed ID: 11540894 [TBL] [Abstract][Full Text] [Related]
13. The organic content of the Tagish Lake meteorite. Pizzarello S; Huang Y; Becker L; Poreda RJ; Nieman RA; Cooper G; Williams M Science; 2001 Sep; 293(5538):2236-9. PubMed ID: 11520948 [TBL] [Abstract][Full Text] [Related]
14. Isomer discrimination of polycyclic aromatic hydrocarbons in the Murchison meteorite by resonant ionization. Callahan MP; Abo-Riziq A; Crews B; Grace L; de Vries MS Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1492-5. PubMed ID: 18571977 [TBL] [Abstract][Full Text] [Related]
15. Molecular distribution of monocarboxylic acids in Asuka carbonaceous chondrites from Antarctica. Naraoka H; Shimoyama A; Harada K Orig Life Evol Biosph; 1999 Mar; 29(2):187-201. PubMed ID: 10391772 [TBL] [Abstract][Full Text] [Related]
16. Identification of weak and strong organic acids in atmospheric aerosols by capillary electrophoresis/mass spectrometry and ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry. Yassine MM; Dabek-Zlotorzynska E; Harir M; Schmitt-Kopplin P Anal Chem; 2012 Aug; 84(15):6586-94. PubMed ID: 22770380 [TBL] [Abstract][Full Text] [Related]
17. Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahigh-resolution fourier transform ion cyclotron resonance mass spectrometry. Mazzoleni LR; Ehrmann BM; Shen X; Marshall AG; Collett JL Environ Sci Technol; 2010 May; 44(10):3690-7. PubMed ID: 20397689 [TBL] [Abstract][Full Text] [Related]
18. Substitution patterns in aromatic rings by increment analysis. Model development and application to natural organic matter. Perdue EM; Hertkorn N; Kettrup A Anal Chem; 2007 Feb; 79(3):1010-21. PubMed ID: 17263329 [TBL] [Abstract][Full Text] [Related]
19. Characterization of pyrogenic black carbon by desorption atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry. Podgorski DC; Hamdan R; McKenna AM; Nyadong L; Rodgers RP; Marshall AG; Cooper WT Anal Chem; 2012 Feb; 84(3):1281-7. PubMed ID: 22242739 [TBL] [Abstract][Full Text] [Related]
20. Molecular and structural characterization of dissolved organic matter during and post cyanobacterial bloom in Taihu by combination of NMR spectroscopy and FTICR mass spectrometry. Zhang F; Harir M; Moritz F; Zhang J; Witting M; Wu Y; Schmitt-Kopplin P; Fekete A; Gaspar A; Hertkorn N Water Res; 2014 Jun; 57():280-94. PubMed ID: 24727497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]