These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
496 related articles for article (PubMed ID: 26275506)
1. Synthesis of Ti-Ta alloys with dual structure by incomplete diffusion between elemental powders. Liu Y; Li K; Wu H; Song M; Wang W; Li N; Tang H J Mech Behav Biomed Mater; 2015 Nov; 51():302-12. PubMed ID: 26275506 [TBL] [Abstract][Full Text] [Related]
2. Effects of alloying elements and annealing treatment on the microstructure and mechanical properties of Nb-Ta-Ti alloys fabricated by partial diffusion for biomedical applications. Liu J; Yang Q; Yin J; Yang H Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110542. PubMed ID: 32204053 [TBL] [Abstract][Full Text] [Related]
3. Microstructure, mechanical behavior and biocompatibility of powder metallurgy Nb-Ti-Ta alloys as biomedical material. Liu J; Chang L; Liu H; Li Y; Yang H; Ruan J Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():512-519. PubMed ID: 27987739 [TBL] [Abstract][Full Text] [Related]
4. Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications. Liu Y; Li K; Luo T; Song M; Wu H; Xiao J; Tan Y; Cheng M; Chen B; Niu X; Hu R; Li X; Tang H Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():241-50. PubMed ID: 26249586 [TBL] [Abstract][Full Text] [Related]
5. Mechanical behaviour of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder. Bolzoni L; Weissgaerber T; Kieback B; Ruiz-Navas EM; Gordo E J Mech Behav Biomed Mater; 2013 Apr; 20():149-61. PubMed ID: 23455171 [TBL] [Abstract][Full Text] [Related]
6. Mechanical properties and microstructure of Ti-Mn alloys produced via powder metallurgy for biomedical applications. Alshammari Y; Yang F; Bolzoni L J Mech Behav Biomed Mater; 2019 Mar; 91():391-397. PubMed ID: 30665199 [TBL] [Abstract][Full Text] [Related]
7. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method. Rao X; Chu CL; Zheng YY J Mech Behav Biomed Mater; 2014 Jun; 34():27-36. PubMed ID: 24556322 [TBL] [Abstract][Full Text] [Related]
8. Effect of Fe addition on properties of Ti-6Al-xFe manufactured by blended elemental process. Sjafrizal T; Dehghan-Manshadi A; Kent D; Yan M; Dargusch MS J Mech Behav Biomed Mater; 2020 Feb; 102():103518. PubMed ID: 31877522 [TBL] [Abstract][Full Text] [Related]
10. Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement. Biesiekierski A; Ping D; Li Y; Lin J; Munir KS; Yamabe-Mitarai Y; Wen C Acta Biomater; 2017 Apr; 53():549-558. PubMed ID: 28163238 [TBL] [Abstract][Full Text] [Related]
11. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder. Gülsoy HÖ; Gülsoy N; Calışıcı R Biomed Mater Eng; 2014; 24(5):1861-73. PubMed ID: 25201399 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the mechanical properties of powder metallurgy Ti-6Al-7Nb alloy. Bolzoni L; Ruiz-Navas EM; Gordo E J Mech Behav Biomed Mater; 2017 Mar; 67():110-116. PubMed ID: 27988440 [TBL] [Abstract][Full Text] [Related]
13. Behaviour of novel low-cost blended elemental Ti-5Fe-xAl alloys fabricated via powder metallurgy. Alshammari Y; Manogar B; Raynova S; Yang F; Bolzoni L J Mech Behav Biomed Mater; 2020 Oct; 110():103865. PubMed ID: 32501221 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and characterization of Ti-Ta-Nb-Mn foams. Aguilar C; Guerra C; Lascano S; Guzman D; Rojas PA; Thirumurugan M; Bejar L; Medina A Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():420-31. PubMed ID: 26478329 [TBL] [Abstract][Full Text] [Related]
15. Bioactive Ti + Mg composites fabricated by powder metallurgy: The relation between the microstructure and mechanical properties. Balog M; Ibrahim AMH; Krizik P; Bajana O; Klimova A; Catic A; Schauperl Z J Mech Behav Biomed Mater; 2019 Feb; 90():45-53. PubMed ID: 30343170 [TBL] [Abstract][Full Text] [Related]
16. Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders. Bolzoni L; Esteban PG; Ruiz-Navas EM; Gordo E J Mech Behav Biomed Mater; 2012 Nov; 15():33-45. PubMed ID: 23026730 [TBL] [Abstract][Full Text] [Related]
17. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti-Sn-Nb alloy produced by powder metallurgy. Nouri A; Hodgson PD; Wen CE Acta Biomater; 2010 Apr; 6(4):1630-9. PubMed ID: 19815096 [TBL] [Abstract][Full Text] [Related]
18. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy. do Prado RF; Esteves GC; Santos ELS; Bueno DAG; Cairo CAA; Vasconcellos LGO; Sagnori RS; Tessarin FBP; Oliveira FE; Oliveira LD; Villaça-Carvalho MFL; Henriques VAR; Carvalho YR; De Vasconcellos LMR PLoS One; 2018; 13(5):e0196169. PubMed ID: 29771925 [TBL] [Abstract][Full Text] [Related]
19. Optimizing the cell compatibility and mechanical properties in TiZrNbTa medium-entropy alloy/β-Ti composites through phase transformation. Du P; Cui Z; Xiang T; Li Y; Zhang L; Cai Z; Zhao M; Xie G Acta Biomater; 2024 Jun; 181():469-482. PubMed ID: 38723926 [TBL] [Abstract][Full Text] [Related]
20. Comparative study on Ti-Nb binary alloys fabricated through spark plasma sintering and conventional P/M routes for biomedical application. Karre R; Kodli BK; Rajendran A; J N; Pattanayak DK; Ameyama K; Dey SR Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():619-627. PubMed ID: 30423747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]