These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26275623)

  • 1. GC skew defines distinct RNA polymerase pause sites in CpG island promoters.
    Kellner WA; Bell JS; Vertino PM
    Genome Res; 2015 Nov; 25(11):1600-9. PubMed ID: 26275623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orphan CpG islands define a novel class of highly active enhancers.
    Bell JSK; Vertino PM
    Epigenetics; 2017 Jun; 12(6):449-464. PubMed ID: 28448736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GC skew is a conserved property of unmethylated CpG island promoters across vertebrates.
    Hartono SR; Korf IF; Chédin F
    Nucleic Acids Res; 2015 Nov; 43(20):9729-41. PubMed ID: 26253743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic CpG islands reveal DNA sequence determinants of chromatin structure.
    Wachter E; Quante T; Merusi C; Arczewska A; Stewart F; Webb S; Bird A
    Elife; 2014 Sep; 3():e03397. PubMed ID: 25259796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional relevance of CpG island length for regulation of gene expression.
    Elango N; Yi SV
    Genetics; 2011 Apr; 187(4):1077-83. PubMed ID: 21288871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GC skew at the 5' and 3' ends of human genes links R-loop formation to epigenetic regulation and transcription termination.
    Ginno PA; Lim YW; Lott PL; Korf I; Chédin F
    Genome Res; 2013 Oct; 23(10):1590-600. PubMed ID: 23868195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequent hypermethylation of orphan CpG islands with enhancer activity in cancer.
    Bae MG; Kim JY; Choi JK
    BMC Med Genomics; 2016 Aug; 9 Suppl 1(Suppl 1):38. PubMed ID: 27534853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence determinants, function, and evolution of CpG islands.
    Angeloni A; Bogdanovic O
    Biochem Soc Trans; 2021 Jun; 49(3):1109-1119. PubMed ID: 34156435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KDM2 proteins constrain transcription from CpG island gene promoters independently of their histone demethylase activity.
    Turberfield AH; Kondo T; Nakayama M; Koseki Y; King HW; Koseki H; Klose RJ
    Nucleic Acids Res; 2019 Sep; 47(17):9005-9023. PubMed ID: 31363749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human transcription factor genes involved in neuronal development tend to have high GC content and CpG elements in the proximal promoter region.
    Long YS; Qin JM; Su T; Zhao QH; Yi YH; Liao WP
    J Genet Genomics; 2011 Apr; 38(4):157-63. PubMed ID: 21530899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The presence of RNA polymerase II, active or stalled, predicts epigenetic fate of promoter CpG islands.
    Takeshima H; Yamashita S; Shimazu T; Niwa T; Ushijima T
    Genome Res; 2009 Nov; 19(11):1974-82. PubMed ID: 19652013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A methyl-sensitive element induces bidirectional transcription in TATA-less CpG island-associated promoters.
    Mahpour A; Scruggs BS; Smiraglia D; Ouchi T; Gelman IH
    PLoS One; 2018; 13(10):e0205608. PubMed ID: 30332484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity of core promoter elements comprising human bidirectional promoters.
    Yang MQ; Elnitski LL
    BMC Genomics; 2008 Sep; 9 Suppl 2(Suppl 2):S3. PubMed ID: 18831794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clusters of regulatory signals for RNA polymerase II transcription associated with Alu family repeats and CpG islands in human promoters.
    Oei SL; Babich VS; Kazakov VI; Usmanova NM; Kropotov AV; Tomilin NV
    Genomics; 2004 May; 83(5):873-82. PubMed ID: 15081116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters.
    Ginno PA; Lott PL; Christensen HC; Korf I; Chédin F
    Mol Cell; 2012 Mar; 45(6):814-25. PubMed ID: 22387027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of putative methylation targets in the MAOA locus using bioinformatic approaches.
    Shumay E; Fowler JS
    Epigenetics; 2010 May; 5(4):325-42. PubMed ID: 20421737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome.
    Weber M; Hellmann I; Stadler MB; Ramos L; Pääbo S; Rebhan M; Schübeler D
    Nat Genet; 2007 Apr; 39(4):457-66. PubMed ID: 17334365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orphan CpG islands identify numerous conserved promoters in the mammalian genome.
    Illingworth RS; Gruenewald-Schneider U; Webb S; Kerr AR; James KD; Turner DJ; Smith C; Harrison DJ; Andrews R; Bird AP
    PLoS Genet; 2010 Sep; 6(9):e1001134. PubMed ID: 20885785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide methylation analysis of retrocopy-associated CpG islands and their genomic environment.
    Grothaus K; Kanber D; Gellhaus A; Mikat B; Kolarova J; Siebert R; Wieczorek D; Horsthemke B
    Epigenetics; 2016 Mar; 11(3):216-26. PubMed ID: 26890210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters.
    Kininis M; Chen BS; Diehl AG; Isaacs GD; Zhang T; Siepel AC; Clark AG; Kraus WL
    Mol Cell Biol; 2007 Jul; 27(14):5090-104. PubMed ID: 17515612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.