These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 2627563)

  • 1. Evolutionary learning and hierarchical Markov systems.
    Hastings HM; Waner S; Wu YR
    Biosystems; 1989; 23(2-3):161-8; discussion 169. PubMed ID: 2627563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods for approximating stochastic evolutionary dynamics on graphs.
    Overton CE; Broom M; Hadjichrysanthou C; Sharkey KJ
    J Theor Biol; 2019 May; 468():45-59. PubMed ID: 30772340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Principles of evolutionary learning design for a stochastic neural network.
    Hastings HM; Waner S
    Biosystems; 1985; 18(1):105-9. PubMed ID: 3840701
    [No Abstract]   [Full Text] [Related]  

  • 4. Fast and asymptotic computation of the fixation probability for Moran processes on graphs.
    Alcalde Cuesta F; González Sequeiros P; Lozano Rojo Á
    Biosystems; 2015 Mar; 129():25-35. PubMed ID: 25625871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite state automata resulting from temporal information maximization and a temporal learning rule.
    Wennekers T; Ay N
    Neural Comput; 2005 Oct; 17(10):2258-90. PubMed ID: 16105225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical analysis of mutation-adaptive evolutionary algorithms.
    Agapie A
    Evol Comput; 2001; 9(2):127-46. PubMed ID: 11382353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of evolutionary distances between nucleotide sequences.
    Zharkikh A
    J Mol Evol; 1994 Sep; 39(3):315-29. PubMed ID: 7932793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying almost invariant sets in stochastic dynamical systems.
    Billings L; Schwartz IB
    Chaos; 2008 Jun; 18(2):023122. PubMed ID: 18601489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On learning dynamics underlying the evolution of learning rules.
    Dridi S; Lehmann L
    Theor Popul Biol; 2014 Feb; 91():20-36. PubMed ID: 24055617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automata with hierarchical control and evolutionary learning.
    Waner S; Wu YH
    Biosystems; 1988; 21(2):115-24. PubMed ID: 3355881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical properties of strongly interacting Markov chains.
    Ay N; Wennekers T
    Neural Netw; 2003 Dec; 16(10):1483-97. PubMed ID: 14622878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new on-line learning model.
    Mendelson S
    Neural Comput; 2001 Apr; 13(4):935-57. PubMed ID: 11255576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability and robustness analysis of cooperation cycles driven by destructive agents in finite populations.
    Requejo RJ; Camacho J; Cuesta JA; Arenas A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026105. PubMed ID: 23005823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accommodating phylogenetic uncertainty in evolutionary studies.
    Huelsenbeck JP; Rannala B; Masly JP
    Science; 2000 Jun; 288(5475):2349-50. PubMed ID: 10875916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure coefficients and strategy selection in multiplayer games.
    McAvoy A; Hauert C
    J Math Biol; 2016 Jan; 72(1-2):203-38. PubMed ID: 25842359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General continuous-time Markov model of sequence evolution via insertions/deletions: are alignment probabilities factorable?
    Ezawa K
    BMC Bioinformatics; 2016 Aug; 17():304. PubMed ID: 27638547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poissonian steady states: from stationary densities to stationary intensities.
    Eliazar I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041140. PubMed ID: 23214562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approximating distributions in stochastic learning.
    Leen TK; Friel R; Nielsen D
    Neural Netw; 2012 Aug; 32():219-28. PubMed ID: 22418034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of attractors in randomly connected networks.
    Toyoizumi T; Huang H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032802. PubMed ID: 25871152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wagner's canalization model.
    Huerta-Sanchez E; Durrett R
    Theor Popul Biol; 2007 Mar; 71(2):121-30. PubMed ID: 17178139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.