These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26275712)

  • 21. A colorimetric sensor array based on sulfuric acid assisted KMnO
    Qiao L; Qian S; Wang Y; Lin H
    Talanta; 2018 May; 181():305-310. PubMed ID: 29426516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing.
    Wang X; Chang TW; Lin G; Gartia MR; Liu GL
    Anal Chem; 2017 Jan; 89(1):611-615. PubMed ID: 27976865
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel label-free optical cysteine sensor based on the competitive oxidation reaction catalyzed by G-quadruplex halves.
    Su H; Qiao F; Duan R; Chen L; Ai S
    Biosens Bioelectron; 2013 May; 43():268-73. PubMed ID: 23333922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrophilic-Hydrophobic Patterned Molecularly Imprinted Photonic Crystal Sensors for High-Sensitive Colorimetric Detection of Tetracycline.
    Hou J; Zhang H; Yang Q; Li M; Jiang L; Song Y
    Small; 2015 Jun; 11(23):2738-42. PubMed ID: 25649896
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The potential use of hydrazine as an alternative to peroxidase in a biosensor: comparison between hydrazine and HRP-based glucose sensors.
    Rahman MA; Won MS; Shim YB
    Biosens Bioelectron; 2005 Aug; 21(2):257-65. PubMed ID: 16023952
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasonic standing wave preparation of a liquid cell for glucose measurements in urine by midinfrared spectroscopy and potential application to smart toilets.
    Yamamoto N; Kawashima N; Kitazaki T; Mori K; Kang H; Nishiyama A; Wada K; Ishimaru I
    J Biomed Opt; 2018 May; 23(5):1-4. PubMed ID: 29790320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of a portable urine glucose monitoring system for health care.
    Park HD; Lee KJ; Yoon HR; Nam HH
    Comput Biol Med; 2005 May; 35(4):275-86. PubMed ID: 15749089
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A multispectral-sensor-based colorimetric reader for biological assays.
    Pirbhai M; Albrecht C; Tirrell C
    Rev Sci Instrum; 2021 Jun; 92(6):064103. PubMed ID: 34243509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct glucose sensing in the physiological range through plasmonic nanoparticle formation.
    Unser S; Campbell I; Jana D; Sagle L
    Analyst; 2015 Jan; 140(2):590-9. PubMed ID: 25426496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanostructured silver fabric as a free-standing NanoZyme for colorimetric detection of glucose in urine.
    Karim MN; Anderson SR; Singh S; Ramanathan R; Bansal V
    Biosens Bioelectron; 2018 Jul; 110():8-15. PubMed ID: 29574249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of poly(diallyldimethylammonium chloride)-coated Fe3O4 nanoparticles for colorimetric sensing of glucose and selective extraction of thiol.
    Yu CJ; Lin CY; Liu CH; Cheng TL; Tseng WL
    Biosens Bioelectron; 2010 Oct; 26(2):913-7. PubMed ID: 20656467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Smartphone spectrometer for colorimetric biosensing.
    Wang Y; Liu X; Chen P; Tran NT; Zhang J; Chia WS; Boujday S; Liedberg B
    Analyst; 2016 May; 141(11):3233-8. PubMed ID: 27163736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of glucose fiber sensor based on immobilized GOD technique for rapid measurement.
    Lin TQ; Lu YL; Hsu CC
    Opt Express; 2010 Dec; 18(26):27560-6. PubMed ID: 21197030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Colorimetric estimation of human glucose level using γ-Fe₂O₃ nanoparticles: an easily recoverable effective mimic peroxidase.
    Mitra K; Ghosh AB; Sarkar A; Saha N; Dutta AK
    Biochem Biophys Res Commun; 2014 Aug; 451(1):30-5. PubMed ID: 25019982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct colorimetric diagnosis of pathogen infections by utilizing thiol-labeled PCR primers and unmodified gold nanoparticles.
    Jung YL; Jung C; Parab H; Li T; Park HG
    Biosens Bioelectron; 2010 Apr; 25(8):1941-6. PubMed ID: 20138499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tandem measurements of iron and creatinine by cross injection analysis with application to urine from thalassemic patients.
    Choengchan N; Mantim T; Inpota P; Nacapricha D; Wilairat P; Jittangprasert P; Waiyawat W; Fucharoen S; Sirankpracha P; Morales NP
    Talanta; 2015 Feb; 133():52-8. PubMed ID: 25435226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of Four Automated Urinalysis Systems Compared to Reference Methods.
    Bartosova K; Kubicek Z; Franekova J; Louzensky G; Lavrikova P; Jabor A
    Clin Lab; 2016 Nov; 62(11):2115-2123. PubMed ID: 28164659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Colorimetric multiplexed immunoassay for sequential detection of tumor markers.
    Wang J; Cao Y; Xu Y; Li G
    Biosens Bioelectron; 2009 Oct; 25(2):532-6. PubMed ID: 19726177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The transformation of common office supplies into a low-cost optical biosensing platform.
    Duk Han Y; Jin Chun H; Yoon HC
    Biosens Bioelectron; 2014 Sep; 59():259-68. PubMed ID: 24732604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel structural specific creatinine sensing scheme for the determination of the urine creatinine.
    Chen CH; Lin MS
    Biosens Bioelectron; 2012 Jan; 31(1):90-4. PubMed ID: 22047975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.