These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26275798)

  • 1. Mock-up experiment at Birmingham University for BNCT project of Osaka University--Neutron flux measurement with gold foil.
    Tamaki S; Sakai M; Yoshihashi S; Manabe M; Zushi N; Murata I; Hoashi E; Kato I; Kuri S; Oshiro S; Nagasaki M; Horiike H
    Appl Radiat Isot; 2015 Dec; 106():72-4. PubMed ID: 26275798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of epi-thermal neutron beam intensity detector with
    Kashiwagi Y; Aoki K; Tamaki S; Guan X; Kusaka S; Sato F; Murata I
    Appl Radiat Isot; 2019 Sep; 151():145-149. PubMed ID: 31177072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation on the reflector/moderator geometry and its effect on the neutron beam design in BNCT.
    Kasesaz Y; Rahmani F; Khalafi H
    Appl Radiat Isot; 2015 Dec; 106():34-7. PubMed ID: 26298435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A feasibility study of the Tehran research reactor as a neutron source for BNCT.
    Kasesaz Y; Khalafi H; Rahmani F; Ezati A; Keyvani M; Hossnirokh A; Shamami MA; Monshizadeh M
    Appl Radiat Isot; 2014 Aug; 90():132-7. PubMed ID: 24742535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutron intensity monitor with activation foil for p-Li neutron source for BNCT--Feasibility test of the concept.
    Murata I; Otani Y; Sato F
    Appl Radiat Isot; 2015 Dec; 106():75-7. PubMed ID: 26242557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.
    Liu Z; Li G; Liu L
    Appl Radiat Isot; 2014 Apr; 86():1-6. PubMed ID: 24448270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A shielding design for an accelerator-based neutron source for boron neutron capture therapy.
    Hawk AE; Blue TE; Woollard JE
    Appl Radiat Isot; 2004 Nov; 61(5):1027-31. PubMed ID: 15308187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An experimental study of the moderator assembly for a low-energy proton accelerator neutron irradiation facility for BNCT.
    Wang CK; Blue TE; Blue JW
    Basic Life Sci; 1990; 54():271-80. PubMed ID: 2176457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose calculation in biological samples in a mixed neutron-gamma field at the TRIGA reactor of the University of Mainz.
    Schmitz T; Blaickner M; Schütz C; Wiehl N; Kratz JV; Bassler N; Holzscheiter MH; Palmans H; Sharpe P; Otto G; Hampel G
    Acta Oncol; 2010 Oct; 49(7):1165-9. PubMed ID: 20831509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of photon converter and photoneutron target for High power electron accelerator based BNCT.
    Rahmani F; Seifi S; Anbaran HT; Ghasemi F
    Appl Radiat Isot; 2015 Dec; 106():45-8. PubMed ID: 26278347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-phantom neutron fluence measurements in the orthogonal Birmingham boron neutron capture therapy beam.
    Tattam DA; Allen DA; Beynon TD; Constantine G; Green S; Scott MC; Weaver DR
    Med Phys; 1998 Oct; 25(10):1964-6. PubMed ID: 9800704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT).
    Capoulat ME; Minsky DM; Kreiner AJ
    Phys Med; 2014 Mar; 30(2):133-46. PubMed ID: 23880544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early clinical experience utilizing scintillator with optical fiber (SOF) detector in clinical boron neutron capture therapy: its issues and solutions.
    Ishikawa M; Yamamoto T; Matsumura A; Hiratsuka J; Miyatake S; Kato I; Sakurai Y; Kumada H; Shrestha SJ; Ono K
    Radiat Oncol; 2016 Aug; 11(1):105. PubMed ID: 27506665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The optimization study of Bonner sphere in the epi-thermal neutron irradiation field for BNCT.
    Ueda H; Tanaka H; Maruhashi A; Ono K; Sakurai Y
    Appl Radiat Isot; 2011 Dec; 69(12):1657-9. PubMed ID: 21334212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.
    Halfon S; Arenshtam A; Kijel D; Paul M; Weissman L; Berkovits D; Eliyahu I; Feinberg G; Kreisel A; Mardor I; Shimel G; Shor A; Silverman I; Tessler M
    Appl Radiat Isot; 2015 Dec; 106():57-62. PubMed ID: 26300076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of radioactivity in the bodies of mice induced by neutron exposure from an epi-thermal neutron source of an accelerator-based boron neutron capture therapy system.
    Nakamura S; Imamichi S; Masumoto K; Ito M; Wakita A; Okamoto H; Nishioka S; Iijima K; Kobayashi K; Abe Y; Igaki H; Kurita K; Nishio T; Masutani M; Itami J
    Proc Jpn Acad Ser B Phys Biol Sci; 2017; 93(10):821-831. PubMed ID: 29225308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source.
    Hashimoto Y; Hiraga F; Kiyanagi Y
    Appl Radiat Isot; 2015 Dec; 106():88-91. PubMed ID: 26272165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.
    Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I
    Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of boron neutron capture therapy (BNCT) and the design and dosimetry of a high-intensity, 24 keV, neutron beam for BNCT research.
    Perks CA; Mill AJ; Constantine G; Harrison KG; Gibson JA
    Br J Radiol; 1988 Dec; 61(732):1115-26. PubMed ID: 3064858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimum design and criticality safety of a beam-shaping assembly with an accelerator-driven subcritical neutron multiplier for boron neutron capture therapies.
    Hiraga F
    Appl Radiat Isot; 2015 Dec; 106():84-7. PubMed ID: 26235186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.