These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 26276174)

  • 21. Strong Exciton-Plasmon Coupling in Silver Nanowire Nanocavities.
    Beane G; Brown BS; Johns P; Devkota T; Hartland GV
    J Phys Chem Lett; 2018 Apr; 9(7):1676-1681. PubMed ID: 29547298
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons.
    Wersäll M; Cuadra J; Antosiewicz TJ; Balci S; Shegai T
    Nano Lett; 2017 Jan; 17(1):551-558. PubMed ID: 28005384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical stark effects in j-aggregate-metal hybrid nanostructures exhibiting a strong exciton-surface-plasmon-polariton interaction.
    Vasa P; Wang W; Pomraenke R; Maiuri M; Manzoni C; Cerullo G; Lienau C
    Phys Rev Lett; 2015 Jan; 114(3):036802. PubMed ID: 25659013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polarization-dependent strong coupling between surface plasmon polaritons and excitons in an organic-dye-doped nanostructure.
    Zhang K; Chen TY; Shi WB; Li CY; Fan RH; Wang QJ; Peng RW; Wang M
    Opt Lett; 2017 Jul; 42(14):2834-2837. PubMed ID: 28708181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manipulating the fluorescence of exciton-plasmon hybrids in the strong coupling regime with dual resonance enhancements.
    Qiu YH; Ding SJ; Nan F; Wang Q; Chen K; Hao ZH; Zhou L; Li X; Wang QQ
    Nanoscale; 2019 Nov; 11(45):22033-22041. PubMed ID: 31714554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strong Coupling Between Plasmons and Molecular Excitons in Metal-Organic Frameworks.
    Sample AD; Guan J; Hu J; Reese T; Cherqui CR; Park JE; Freire-Fernández F; Schaller RD; Schatz GC; Odom TW
    Nano Lett; 2021 Sep; 21(18):7775-7780. PubMed ID: 34490777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrastrong plasmon-exciton coupling in metal nanoprisms with J-aggregates.
    Balci S
    Opt Lett; 2013 Nov; 38(21):4498-501. PubMed ID: 24177129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface enhanced resonant Raman scattering in hybrid MoSe
    Abid I; Chen W; Yuan J; Najmaei S; Peñafiel EC; Péchou R; Large N; Lou J; Mlayah A
    Opt Express; 2018 Oct; 26(22):29411-29423. PubMed ID: 30470105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A molecular spectroscopic view of surface plasmon enhanced resonance Raman scattering.
    Kelley AM
    J Chem Phys; 2008 Jun; 128(22):224702. PubMed ID: 18554038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strongly coupled exciton-surface plasmon polariton from excited-subband transitions of single-walled carbon nanotubes.
    Zhou W; Zhang X; Zhang Y; Tian C; Xu C
    Opt Express; 2017 Dec; 25(25):32142-32149. PubMed ID: 29245878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exciton-Plasmon Coupling and Electromagnetically Induced Transparency in Monolayer Semiconductors Hybridized with Ag Nanoparticles.
    Zhao W; Wang S; Liu B; Verzhbitskiy I; Li S; Giustiniano F; Kozawa D; Loh KP; Matsuda K; Okamoto K; Oulton RF; Eda G
    Adv Mater; 2016 Apr; 28(14):2709-15. PubMed ID: 26835879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characteristics of exciton-polaritons in ZnO-based hybrid microcavities.
    Chen JR; Lu TC; Wu YC; Lin SC; Hsieh WF; Wang SC; Deng H
    Opt Express; 2011 Feb; 19(5):4101-12. PubMed ID: 21369239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmon-Exciton Coupling Using DNA Templates.
    Roller EM; Argyropoulos C; Högele A; Liedl T; Pilo-Pais M
    Nano Lett; 2016 Sep; 16(9):5962-6. PubMed ID: 27531635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of Gold Nano-Bipyramid Dimensions on Strong Coupling with Excitons of Monolayer MoS
    Lawless J; Hrelescu C; Elliott C; Peters L; McEvoy N; Bradley AL
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46406-46415. PubMed ID: 32960560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observation of hybrid Tamm-plasmon exciton- polaritons with GaAs quantum wells and a MoSe
    Wurdack M; Lundt N; Klaas M; Baumann V; Kavokin AV; Höfling S; Schneider C
    Nat Commun; 2017 Aug; 8(1):259. PubMed ID: 28811462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dependence of surface enhanced Raman scattering on the plasmonic template periodicity.
    Mandal P; Ramakrishna SA
    Opt Lett; 2011 Sep; 36(18):3705-7. PubMed ID: 21931439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmon-enhanced resonance Raman scattering and fluorescence in Langmuir-Blodgett monolayers.
    Moula G; Aroca RF
    Anal Chem; 2011 Jan; 83(1):284-8. PubMed ID: 21138285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anti-crossing property of strong coupling system of silver nanoparticle dimers coated with thin dye molecular films analyzed by electromagnetism.
    Itoh T; Yamamoto YS; Okamoto T
    J Chem Phys; 2020 Feb; 152(5):054710. PubMed ID: 32035435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.