These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

608 related articles for article (PubMed ID: 26276187)

  • 21. Generation of Multiple Excitons in Ag2S Quantum Dots: Single High-Energy versus Multiple-Photon Excitation.
    Sun J; Yu W; Usman A; Isimjan TT; DGobbo S; Alarousu E; Takanabe K; Mohammed OF
    J Phys Chem Lett; 2014 Feb; 5(4):659-65. PubMed ID: 26270833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phonon-assisted photoluminescence from a semiconductor quantum dot with resonant electron and phonon subsystems.
    Baimuratov AS; Rukhlenko ID; Leonov MY; Shalkovskiy AG; Baranov AV; Fedorov AV
    Opt Express; 2014 Aug; 22(16):19707-25. PubMed ID: 25321054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiple Exciton Generation in Semiconductor Quantum Dots.
    Beard MC
    J Phys Chem Lett; 2011 Jun; 2(11):1282-8. PubMed ID: 26295422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Auger recombination of biexcitons and negative and positive trions in individual quantum dots.
    Park YS; Bae WK; Pietryga JM; Klimov VI
    ACS Nano; 2014 Jul; 8(7):7288-96. PubMed ID: 24909861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Auger Recombination in Self-Assembled Quantum Dots: Quenching and Broadening of the Charged Exciton Transition.
    Kurzmann A; Ludwig A; Wieck AD; Lorke A; Geller M
    Nano Lett; 2016 May; 16(5):3367-72. PubMed ID: 27087053
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrafast photophysical process of bi-exciton Auger recombination in CuInS
    Yang G; Shi S; Zhang X; Zhou S; Liu D; Liang Y; Chen Z; Liang G
    Opt Express; 2021 Mar; 29(6):9012-9020. PubMed ID: 33820339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Auger Recombination and Carrier-Lattice Thermalization in Semiconductor Quantum Dots under Intense Excitation.
    Yue L; Li J; Qi Y; Chen J; Wang X; Cao J
    Nano Lett; 2023 Apr; 23(7):2578-2585. PubMed ID: 36972411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantum Zeno effect rationalizes the phonon bottleneck in semiconductor quantum dots.
    Kilina SV; Neukirch AJ; Habenicht BF; Kilin DS; Prezhdo OV
    Phys Rev Lett; 2013 May; 110(18):180404. PubMed ID: 23683182
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Slow Hot-Exciton Cooling and Enhanced Interparticle Excitonic Coupling in HgTe Quantum Dots.
    Fan K; Sergeeva KA; Sergeev AA; Zhang L; Chan CCS; Li Z; Zhong X; Kershaw SV; Liu J; Rogach AL; Wong KS
    ACS Nano; 2024 Jul; 18(27):18011-18021. PubMed ID: 38935537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exciton-phonon scattering and nonradiative relaxation of excited carriers in hydrothermally synthesized CdTe quantum dots.
    Jagtap AM; Khatei J; Koteswara Rao KS
    Phys Chem Chem Phys; 2015 Nov; 17(41):27579-87. PubMed ID: 26426345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO₂ films by transient absorption and single dot fluorescence spectroscopy.
    Song N; Zhu H; Liu Z; Huang Z; Wu D; Lian T
    ACS Nano; 2013 Feb; 7(2):1599-608. PubMed ID: 23281781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Negative Trion Auger Recombination in Highly Luminescent InP/ZnSe/ZnS Quantum Dots.
    Kim T; Won YH; Jang E; Kim D
    Nano Lett; 2021 Mar; 21(5):2111-2116. PubMed ID: 33635669
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling Auger Processes with Nonadiabatic Molecular Dynamics.
    Zhou G; Lu G; Prezhdo OV
    Nano Lett; 2021 Jan; 21(1):756-761. PubMed ID: 33320680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Auger ionization beats photo-oxidation of semiconductor quantum dots: extended stability of single-molecule photoluminescence.
    Yamashita S; Hamada M; Nakanishi S; Saito H; Nosaka Y; Wakida S; Biju V
    Angew Chem Int Ed Engl; 2015 Mar; 54(13):3892-6. PubMed ID: 25728264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. False multiple exciton recombination and multiple exciton generation signals in semiconductor quantum dots arise from surface charge trapping.
    Tyagi P; Kambhampati P
    J Chem Phys; 2011 Mar; 134(9):094706. PubMed ID: 21384996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Size-dependent trap-assisted Auger recombination in semiconductor nanocrystals.
    Cohn AW; Schimpf AM; Gunthardt CE; Gamelin DR
    Nano Lett; 2013 Apr; 13(4):1810-5. PubMed ID: 23464673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of the Electron-Phonon Coupling in PbS/MnTe Quantum Dots Based on Temperature-Dependent Photoluminescence.
    Halim ND; Zaini MS; Talib ZA; Liew JYC; Kamarudin MA
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Charge Transfer Dynamics from Photoexcited Semiconductor Quantum Dots.
    Zhu H; Yang Y; Wu K; Lian T
    Annu Rev Phys Chem; 2016 May; 67():259-81. PubMed ID: 27215815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.