BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26276324)

  • 1. Different Types of Vibrations Interacting with Electronic Excitations in Phycoerythrin 545 and Fenna-Matthews-Olson Antenna Systems.
    Aghtar M; Strümpfer J; Olbrich C; Schulten K; Kleinekathöfer U
    J Phys Chem Lett; 2014 Sep; 5(18):3131-7. PubMed ID: 26276324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis of the exciton-phonon interactions in the PE545 light-harvesting complex.
    Viani L; Corbella M; Curutchet C; O'Reilly EJ; Olaya-Castro A; Mennucci B
    Phys Chem Chem Phys; 2014 Aug; 16(30):16302-11. PubMed ID: 24978840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QM/MM modeling of environmental effects on electronic transitions of the FMO complex.
    Gao J; Shi WJ; Ye J; Wang X; Hirao H; Zhao Y
    J Phys Chem B; 2013 Apr; 117(13):3488-95. PubMed ID: 23480507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Force Fields and Quantum Chemistry Approach on Spectral Densities of BChl a in Solution and in FMO Proteins.
    Chandrasekaran S; Aghtar M; Valleau S; Aspuru-Guzik A; Kleinekathöfer U
    J Phys Chem B; 2015 Aug; 119(31):9995-10004. PubMed ID: 26156758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On uncorrelated inter-monomer Förster energy transfer in Fenna-Matthews-Olson complexes.
    Kell A; Khmelnitskiy AY; Reinot T; Jankowiak R
    J R Soc Interface; 2019 Feb; 16(151):20180882. PubMed ID: 30958204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory and Simulation of the Environmental Effects on FMO Electronic Transitions.
    Olbrich C; Strümpfer J; Schulten K; Kleinekathöfer U
    J Phys Chem Lett; 2011 Jun; 2011(2):1771-1776. PubMed ID: 21804928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multipartite entanglement in the Fenna-Matthews-Olson (FMO) pigment-protein complex.
    Thilagam A
    J Chem Phys; 2012 May; 136(17):175104. PubMed ID: 22583269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variety, the spice of life and essential for robustness in excitation energy transfer in light-harvesting complexes.
    Oh SA; Coker DF; Hutchinson DAW
    Faraday Discuss; 2019 Dec; 221(0):59-76. PubMed ID: 31552998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robustness, efficiency, and optimality in the Fenna-Matthews-Olson photosynthetic pigment-protein complex.
    Baker LA; Habershon S
    J Chem Phys; 2015 Sep; 143(10):105101. PubMed ID: 26374060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Spectral Density Shapes on the Excitonic Structure and Dynamics of the Fenna-Matthews-Olson Trimer from Chlorobaculum tepidum.
    Kell A; Blankenship RE; Jankowiak R
    J Phys Chem A; 2016 Aug; 120(31):6146-54. PubMed ID: 27438068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional electronic spectroscopy of bacteriochlorophyll a in solution: Elucidating the coherence dynamics of the Fenna-Matthews-Olson complex using its chromophore as a control.
    Fransted KA; Caram JR; Hayes D; Engel GS
    J Chem Phys; 2012 Sep; 137(12):125101. PubMed ID: 23020349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy flow in the cryptophyte PE545 antenna is directed by bilin pigment conformation.
    Curutchet C; Novoderezhkin VI; Kongsted J; Muñoz-Losa A; van Grondelle R; Scholes GD; Mennucci B
    J Phys Chem B; 2013 Apr; 117(16):4263-73. PubMed ID: 22992117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Uniform Excited State Electronic-Vibrational Coupling of Pigment-Protein Complexes.
    Irgen-Gioro S; Gururangan K; Spencer AP; Harel E
    J Phys Chem Lett; 2020 Dec; 11(24):10388-10395. PubMed ID: 33238100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive First-Principles Modeling of a Photosynthetic Antenna Protein: The Fenna-Matthews-Olson Complex.
    Kim Y; Morozov D; Stadnytskyi V; Savikhin S; Slipchenko LV
    J Phys Chem Lett; 2020 Mar; 11(5):1636-1643. PubMed ID: 32013435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial and Electronic Correlations in the PE545 Light-Harvesting Complex.
    Viani L; Curutchet C; Mennucci B
    J Phys Chem Lett; 2013 Feb; 4(3):372-7. PubMed ID: 26281726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex.
    Thyrhaug E; Tempelaar R; Alcocer MJP; Žídek K; Bína D; Knoester J; Jansen TLC; Zigmantas D
    Nat Chem; 2018 Jul; 10(7):780-786. PubMed ID: 29785033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perturbation of bacteriochlorophyll molecules in Fenna-Matthews-Olson protein complexes through mutagenesis of cysteine residues.
    Saer R; Orf GS; Lu X; Zhang H; Cuneo MJ; Myles DAA; Blankenship RE
    Biochim Biophys Acta; 2016 Sep; 1857(9):1455-1463. PubMed ID: 27114180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Open quantum system parameters for light harvesting complexes from molecular dynamics.
    Wang X; Ritschel G; Wüster S; Eisfeld A
    Phys Chem Chem Phys; 2015 Oct; 17(38):25629-41. PubMed ID: 26372495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quest for spatially correlated fluctuations in the FMO light-harvesting complex.
    Olbrich C; Strümpfer J; Schulten K; Kleinekathöfer U
    J Phys Chem B; 2011 Feb; 115(4):758-64. PubMed ID: 21142050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the excitonic landscape of the Chlorobaculum tepidum Fenna-Matthews-Olson (FMO) complex: a mutagenesis approach.
    Saer RG; Stadnytskyi V; Magdaong NC; Goodson C; Savikhin S; Blankenship RE
    Biochim Biophys Acta Bioenerg; 2017 Apr; 1858(4):288-296. PubMed ID: 28159567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.