BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 26276430)

  • 1. Phylogenetic and amino acid conservation analyses of bacterial L-aspartate-α-decarboxylase and of its zymogen-maturation protein reveal a putative interaction domain.
    Stuecker TN; Bramhacharya S; Hodge-Hanson KM; Suen G; Escalante-Semerena JC
    BMC Res Notes; 2015 Aug; 8():354. PubMed ID: 26276430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PanM, an acetyl-coenzyme A sensor required for maturation of L-aspartate decarboxylase (PanD).
    Stuecker TN; Tucker AC; Escalante-Semerena JC
    mBio; 2012; 3(4):. PubMed ID: 22782525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The missing link in coenzyme A biosynthesis: PanM (formerly YhhK), a yeast GCN5 acetyltransferase homologue triggers aspartate decarboxylase (PanD) maturation in Salmonella enterica.
    Stuecker TN; Hodge KM; Escalante-Semerena JC
    Mol Microbiol; 2012 May; 84(4):608-19. PubMed ID: 22497218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli.
    Dusch N; Pühler A; Kalinowski J
    Appl Environ Microbiol; 1999 Apr; 65(4):1530-9. PubMed ID: 10103247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of mutations restricting autocatalytic activation of bacterial L-aspartate α-decarboxylase.
    Mo Q; Li Y; Wang J; Shi G
    Amino Acids; 2018 Oct; 50(10):1433-1440. PubMed ID: 30073608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An activator for pyruvoyl-dependent l-aspartate α-decarboxylase is conserved in a small group of the γ-proteobacteria including Escherichia coli.
    Nozaki S; Webb ME; Niki H
    Microbiologyopen; 2012 Sep; 1(3):298-310. PubMed ID: 23170229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of the PanD/PanZ protein complex reveals negative feedback regulation of pantothenate biosynthesis by coenzyme A.
    Monteiro DCF; Patel V; Bartlett CP; Nozaki S; Grant TD; Gowdy JA; Thompson GS; Kalverda AP; Snell EH; Niki H; Pearson AR; Webb ME
    Chem Biol; 2015 Apr; 22(4):492-503. PubMed ID: 25910242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significance of Arg3, Arg54, and Tyr58 of L-aspartate α-decarboxylase from Corynebacterium glutamicum in the process of self-cleavage.
    Cui W; Shi Z; Fang Y; Zhou L; Ding N; Zhou Z
    Biotechnol Lett; 2014 Jan; 36(1):121-6. PubMed ID: 24104602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How an overlooked gene in coenzyme a synthesis solved an enzyme mechanism predicament.
    Cronan JE
    Mol Microbiol; 2023 Jun; 119(6):687-694. PubMed ID: 37140060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression, purification, and biochemical characterization of Mycobacterium tuberculosis aspartate decarboxylase, PanD.
    Chopra S; Pai H; Ranganathan A
    Protein Expr Purif; 2002 Aug; 25(3):533-40. PubMed ID: 12182836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tools for metabolic engineering in Escherichia coli: inactivation of panD by a point mutation.
    Kennedy J; Kealey JT
    Anal Biochem; 2004 Apr; 327(1):91-6. PubMed ID: 15033515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Characterization of L-aspartate-α-decarboxylase from Bacillus subtilis].
    Deng S; Zhang J; Cai Z; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2015 Aug; 31(8):1184-93. PubMed ID: 26762040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of three sites involved in the divergence of L-aspartate-α-decarboxylase self-cleavage in bacteria.
    Zhao M; Wang M; Peng L; Liu W; Song X; Liu Z; Zheng Y
    Enzyme Microb Technol; 2022 Aug; 158():110048. PubMed ID: 35447535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of the schiff base intermediate prior to decarboxylation in the catalytic cycle of aspartate alpha-decarboxylase.
    Lee BI; Suh SW
    J Mol Biol; 2004 Jun; 340(1):1-7. PubMed ID: 15184017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli L-aspartate-alpha-decarboxylase: preprotein processing and observation of reaction intermediates by electrospray mass spectrometry.
    Ramjee MK; Genschel U; Abell C; Smith AG
    Biochem J; 1997 May; 323 ( Pt 3)(Pt 3):661-9. PubMed ID: 9169598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond.
    Kulis-Horn RK; Rückert C; Kalinowski J; Persicke M
    BMC Microbiol; 2017 Jul; 17(1):161. PubMed ID: 28720084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of a heterooctameric complex between aspartate α-decarboxylase and its cognate activating factor, PanZ, is CoA-dependent.
    Monteiro DC; Rugen MD; Shepherd D; Nozaki S; Niki H; Webb ME
    Biochem Biophys Res Commun; 2012 Sep; 426(3):350-5. PubMed ID: 22940551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Mechanism of Regulation of Pantothenate Biosynthesis by the PanD-PanZ·AcCoA Complex Reveals an Additional Mode of Action for the Antimetabolite N-Pentyl Pantothenamide (N5-Pan).
    Arnott ZLP; Nozaki S; Monteiro DCF; Morgan HE; Pearson AR; Niki H; Webb ME
    Biochemistry; 2017 Sep; 56(37):4931-4939. PubMed ID: 28832133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering protonation conformation of l-aspartate-α-decarboxylase to relieve mechanism-based inactivation.
    Qian Y; Lu C; Liu J; Song W; Chen X; Luo Q; Liu L; Wu J
    Biotechnol Bioeng; 2020 Jun; 117(6):1607-1614. PubMed ID: 32096553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular engineering of L-aspartate-α-decarboxylase for improved activity and catalytic stability.
    Pei W; Zhang J; Deng S; Tigu F; Li Y; Li Q; Cai Z; Li Y
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6015-6021. PubMed ID: 28589224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.