These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26276535)

  • 21. Estimating Radium Activity in Shale Gas Produced Brine.
    Fan W; Hayes KF; Ellis BR
    Environ Sci Technol; 2018 Sep; 52(18):10839-10847. PubMed ID: 30075626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radiochemical signature of radium-isotopes and some radiological hazard parameters in TENORM waste associated with petroleum production: A review study.
    El Afifi EM; Mansy MS; Hilal MA
    J Environ Radioact; 2023 Jan; 256():107042. PubMed ID: 36283880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Radiochemical characterization of produced water from two production offshore oilfields in Ghana.
    Kpeglo DO; Mantero J; Darko EO; Emi-Reynolds G; Faanu A; Manjón G; Vioque I; Akaho EH; Garcia-Tenorio R
    J Environ Radioact; 2016 Feb; 152():35-45. PubMed ID: 26630039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of the radiological impact of oil refining industry.
    Bakr WF
    J Environ Radioact; 2010 Mar; 101(3):237-43. PubMed ID: 20005611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding the Radioactive Ingrowth and Decay of Naturally Occurring Radioactive Materials in the Environment: An Analysis of Produced Fluids from the Marcellus Shale.
    Nelson AW; Eitrheim ES; Knight AW; May D; Mehrhoff MA; Shannon R; Litman R; Burnett WC; Forbes TZ; Schultz MK
    Environ Health Perspect; 2015 Jul; 123(7):689-96. PubMed ID: 25831257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.
    Vaasma T; Kiisk M; Meriste T; Tkaczyk AH
    J Environ Radioact; 2014 Dec; 138():427-33. PubMed ID: 24661430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical fractionation of radium-226 in NORM contaminated soil from oilfields.
    Al Abdullah J; Al-Masri MS; Amin Y; Awad I; Sheaib Z
    J Environ Radioact; 2016 Dec; 165():47-53. PubMed ID: 27623014
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NORM management in the oil and gas industry.
    Cowie M; Mously K; Fageeha O; Nassar R
    Ann ICRP; 2012; 41(3-4):318-31. PubMed ID: 23089032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Natural radionuclide concentrations in processed materials from Thai mineral industries.
    Chanyotha S; Kranrod C; Chankow N; Kritsananuwat R; Sriploy P; Pangza K
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):71-5. PubMed ID: 22908347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Natural radioactivity content in soil and indoor air of Chellanam.
    Mathew S; Rajagopalan M; Abraham JP; Balakrishnan D; Umadevi AG
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):80-3. PubMed ID: 22951996
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced radioactivity due to natural oil and gas production and related radiological problems.
    Kolb WA; Wojcik M
    Sci Total Environ; 1985 Oct; 45():77-84. PubMed ID: 4081775
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of reserve pit sludge from unconventional natural gas hydraulic fracturing and drilling operations for the presence of technologically enhanced naturally occurring radioactive material (TENORM).
    Rich AL; Crosby EC
    New Solut; 2013; 23(1):117-35. PubMed ID: 23552651
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Near-surface disposal of concentrated NORM wastes.
    Hutchinson DE; Toussaint LF
    Appl Radiat Isot; 1998 Mar; 49(3):265-71. PubMed ID: 9451780
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radiological hazards of TENORM in the wasted petroleum pipes.
    Abo-Elmagd M; Soliman HA; Salman KhA; El-Masry NM
    J Environ Radioact; 2010 Jan; 101(1):51-4. PubMed ID: 19782444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of total effective dose due to certain environmentally placed naturally occurring radioactive materials using a procedural adaptation of RESRAD code.
    Beauvais ZS; Thompson KH; Kearfott KJ
    Health Phys; 2009 Jul; 97(1):50-67. PubMed ID: 19509509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution of naturally occurring radioactivity and ¹³⁷Cs in the marine sediment of Farasan Island, southern Red Sea, Saudi Arabia.
    Al-Zahrany AA; Farouk MA; Al-Yousef AA
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):135-9. PubMed ID: 22923246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Soil radium, soil gas radon and indoor radon empirical relationships to assist in post-closure impact assessment related to near-surface radioactive waste disposal.
    Appleton JD; Cave MR; Miles JC; Sumerling TJ
    J Environ Radioact; 2011 Mar; 102(3):221-34. PubMed ID: 20951477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Threshold values for the protection of marine ecosystems from NORM in subsea oil and gas infrastructure.
    Koppel DJ; Cresswell T; MacIntosh A; von Hellfeld R; Hastings A; Higgins S
    J Environ Radioact; 2023 Mar; 258():107093. PubMed ID: 36621180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sulfate precipitation in produced water from Marcellus Shale for the control of naturally occurring radioactive material.
    Gusa AV; Tomani A; Zhang Z; Vidic RD
    Water Res; 2020 Jun; 177():115765. PubMed ID: 32278993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Results of the European Commission Marina II study: part II--effects of discharges of naturally occurring radioactive material.
    Betti M; Aldave de las Heras L; Janssens A; Henrich E; Hunter G; Gerchikov M; Dutton M; van Weers AW; Nielsen S; Simmonds J; Bexon A; Sazykina T;
    J Environ Radioact; 2004; 74(1-3):255-77. PubMed ID: 15063553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.