BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26276545)

  • 1. Direct quantification of fatty acids in wet microalgal and yeast biomass via a rapid in situ fatty acid methyl ester derivatization approach.
    Dong T; Yu L; Gao D; Yu X; Miao C; Zheng Y; Lian J; Li T; Chen S
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10237-47. PubMed ID: 26276545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total Fatty Acid Content Determination of Whole Microalgal Biomass Using In Situ Transesterification.
    Van Wychen S; Laurens LML
    Methods Mol Biol; 2020; 1980():203-214. PubMed ID: 29199376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous hydrolysis-esterification of wet microalgal lipid using acid.
    Takisawa K; Kanemoto K; Kartikawati M; Kitamura Y
    Bioresour Technol; 2013 Dec; 149():16-21. PubMed ID: 24080318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of co-solvents in improving the direct transesterification of wet microalgal biomass under supercritical condition.
    Abedini Najafabadi H; Vossoughi M; Pazuki G
    Bioresour Technol; 2015 Oct; 193():90-6. PubMed ID: 26117240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient and scalable extraction and quantification method for algal derived biofuel.
    Lohman EJ; Gardner RD; Halverson L; Macur RE; Peyton BM; Gerlach R
    J Microbiol Methods; 2013 Sep; 94(3):235-44. PubMed ID: 23810969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification.
    Laurens LM; Quinn M; Van Wychen S; Templeton DW; Wolfrum EJ
    Anal Bioanal Chem; 2012 Apr; 403(1):167-78. PubMed ID: 22349344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Derivatization and Gas Chromatography of Fatty Acids from Yeast.
    Knittelfelder OL; Kohlwein SD
    Cold Spring Harb Protoc; 2017 May; 2017(5):. PubMed ID: 28461653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of direct conversion method for microalgal biodiesel production using wet biomass of Nannochloropsis salina.
    Kim TH; Suh WI; Yoo G; Mishra SK; Farooq W; Moon M; Shrivastav A; Park MS; Yang JW
    Bioresour Technol; 2015 Sep; 191():438-44. PubMed ID: 25827362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of variables affecting the direct transesterification of wet biomass from Nannochloropsis oceanica using ionic liquid as a co-solvent.
    Lee H; Shin WS; Jung JY; Kim CW; Lee JW; Kwon JH; Yang JW
    Bioprocess Biosyst Eng; 2015 May; 38(5):981-7. PubMed ID: 25634438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodiesel from wet microalgae: extraction with hexane after the microwave-assisted transesterification of lipids.
    Cheng J; Huang R; Li T; Zhou J; Cen K
    Bioresour Technol; 2014 Oct; 170():69-75. PubMed ID: 25125194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction of saponifiable lipids from wet microalgal biomass for biodiesel production.
    Jiménez Callejón MJ; Robles Medina A; Macías Sánchez MD; Hita Peña E; Esteban Cerdán L; González Moreno PA; Molina Grima E
    Bioresour Technol; 2014 Oct; 169():198-205. PubMed ID: 25058294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-step in situ biodiesel production from microalgae with high free fatty acid content.
    Dong T; Wang J; Miao C; Zheng Y; Chen S
    Bioresour Technol; 2013 May; 136():8-15. PubMed ID: 23548399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of Microbial Lipids to Biodiesel and Basic Lab Tests for Analysis of Fuel-Quality Parameters.
    Franz AK; Yothers C
    Methods Mol Biol; 2019; 1995():285-310. PubMed ID: 31148135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ transesterification of highly wet microalgae using hydrochloric acid.
    Kim B; Im H; Lee JW
    Bioresour Technol; 2015 Jun; 185():421-5. PubMed ID: 25769690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of fatty acid content and composition in microalgae.
    Breuer G; Evers WA; de Vree JH; Kleinegris DM; Martens DE; Wijffels RH; Lamers PP
    J Vis Exp; 2013 Oct; (80):. PubMed ID: 24121679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vortex fluidic mediated direct transesterification of wet microalgae biomass to biodiesel.
    Sitepu EK; Corbin K; Luo X; Pye SJ; Tang Y; Leterme SC; Heimann K; Raston CL; Zhang W
    Bioresour Technol; 2018 Oct; 266():488-497. PubMed ID: 29990765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-purity biodiesel production from microalgae and added-value lipid extraction: a new process.
    Veillette M; Giroir-Fendler A; Faucheux N; Heitz M
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):109-19. PubMed ID: 24859519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodiesel synthesis by direct transesterification of microalga Botryococcus braunii with continuous methanol reflux.
    Hidalgo P; Ciudad G; Schober S; Mittelbach M; Navia R
    Bioresour Technol; 2015 Apr; 181():32-9. PubMed ID: 25625464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion and recovery of saponifiable lipids from microalgae using a nonpolar solvent via lipase-assisted extraction.
    Law SQK; Halim R; Scales PJ; Martin GJO
    Bioresour Technol; 2018 Jul; 260():338-347. PubMed ID: 29649726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid Characterization of Fatty Acids in Oleaginous Microalgae by Near-Infrared Spectroscopy.
    Liu B; Liu J; Chen T; Yang B; Jiang Y; Wei D; Chen F
    Int J Mol Sci; 2015 Mar; 16(4):7045-56. PubMed ID: 25826532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.