These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 26276637)

  • 1. Identification of Gene Positioning Factors Using High-Throughput Imaging Mapping.
    Shachar S; Voss TC; Pegoraro G; Sciascia N; Misteli T
    Cell; 2015 Aug; 162(4):911-23. PubMed ID: 26276637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lighting Up Genes in Single Cells at Scale.
    Liu Z
    Cell; 2015 Aug; 162(4):705-7. PubMed ID: 26276626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Scale Imaging of the 3D Organization and Transcriptional Activity of Chromatin.
    Su JH; Zheng P; Kinrot SS; Bintu B; Zhuang X
    Cell; 2020 Sep; 182(6):1641-1659.e26. PubMed ID: 32822575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ChromoTrace: Computational reconstruction of 3D chromosome configurations for super-resolution microscopy.
    Barton C; Morganella S; Ødegård-Fougner Ø; Alexander S; Ries J; Fitzgerald T; Ellenberg J; Birney E
    PLoS Comput Biol; 2018 Mar; 14(3):e1006002. PubMed ID: 29522506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HIPMap: A High-Throughput Imaging Method for Mapping Spatial Gene Positions.
    Shachar S; Pegoraro G; Misteli T
    Cold Spring Harb Symp Quant Biol; 2015; 80():73-81. PubMed ID: 26472748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HiCTMap: Detection and analysis of chromosome territory structure and position by high-throughput imaging.
    Jowhar Z; Gudla PR; Shachar S; Wangsa D; Russ JL; Pegoraro G; Ried T; Raznahan A; Misteli T
    Methods; 2018 Jun; 142():30-38. PubMed ID: 29408376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracing DNA paths and RNA profiles in cultured cells and tissues with ORCA.
    Mateo LJ; Sinnott-Armstrong N; Boettiger AN
    Nat Protoc; 2021 Mar; 16(3):1647-1713. PubMed ID: 33619390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topokaryotyping demonstrates single cell variability and stress dependent variations in nuclear envelope associated domains.
    Jurisic A; Robin C; Tarlykov P; Siggens L; Schoell B; Jauch A; Ekwall K; Sørensen CS; Lipinski M; Shoaib M; Ogryzko V
    Nucleic Acids Res; 2018 Dec; 46(22):e135. PubMed ID: 30215776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization.
    Moffitt JR; Hao J; Wang G; Chen KH; Babcock HP; Zhuang X
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):11046-51. PubMed ID: 27625426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated 3D Gene Position Analysis Using a Customized Imaris Plugin: XTFISHInsideNucleus.
    Ashenafi MS; Baroux C
    Methods Mol Biol; 2018; 1675():591-613. PubMed ID: 29052213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Higher-Order Chromatin Organization Using 3D DNA Fluorescent In Situ Hybridization.
    Szabo Q; Cavalli G; Bantignies F
    Methods Mol Biol; 2021; 2157():221-237. PubMed ID: 32820407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Causes and consequences of nuclear gene positioning.
    Shachar S; Misteli T
    J Cell Sci; 2017 May; 130(9):1501-1508. PubMed ID: 28404786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smart 3D-FISH: automation of distance analysis in nuclei of interphase cells by image processing.
    Gué M; Messaoudi C; Sun JS; Boudier T
    Cytometry A; 2005 Sep; 67(1):18-26. PubMed ID: 16082715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral imaging to visualize higher-order genomic organization.
    Sawyer IA; Shevtsov SP; Dundr M
    Nucleus; 2016 May; 7(3):325-38. PubMed ID: 27167405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualizing the Spatial Relationship of the Genome with the Nuclear Envelope Using Fluorescence In Situ Hybridization.
    Clements CS; Bikkul U; Ahmed MH; Foster HA; Godwin LS; Bridger JM
    Methods Mol Biol; 2016; 1411():387-406. PubMed ID: 27147055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial organization of the somatosensory cortex revealed by osmFISH.
    Codeluppi S; Borm LE; Zeisel A; La Manno G; van Lunteren JA; Svensson CI; Linnarsson S
    Nat Methods; 2018 Nov; 15(11):932-935. PubMed ID: 30377364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional positioning of genes in mouse cell nuclei.
    Hepperger C; Mannes A; Merz J; Peters J; Dietzel S
    Chromosoma; 2008 Dec; 117(6):535-51. PubMed ID: 18597102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-throughput DNA FISH protocol to visualize genome regions in human cells.
    Finn EH; Misteli T
    STAR Protoc; 2021 Sep; 2(3):100741. PubMed ID: 34458868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Structure of the human genome: order in randomness.
    Kozubek S; Lukásová E; Jirsová P; Koutná I; Kozubek M; Ganová A; Bártová E; Falk M; Paseková R
    Chromosoma; 2002 Dec; 111(5):321-31. PubMed ID: 12474061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing novel methods to image and visualize 3D genomes.
    Ma T; Chen L; Shi M; Niu J; Zhang X; Yang X; Zhanghao K; Wang M; Xi P; Jin D; Zhang M; Gao J
    Cell Biol Toxicol; 2018 Oct; 34(5):367-380. PubMed ID: 29577183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.