These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 26276819)

  • 1. Chloride intracellular channel 4 is required for maturation of the cerebral collateral circulation.
    Lucitti JL; Tarte NJ; Faber JE
    Am J Physiol Heart Circ Physiol; 2015 Oct; 309(7):H1141-50. PubMed ID: 26276819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vascular endothelial growth factor-A specifies formation of native collaterals and regulates collateral growth in ischemia.
    Clayton JA; Chalothorn D; Faber JE
    Circ Res; 2008 Oct; 103(9):1027-36. PubMed ID: 18802023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of the collateral circulation is regulated by vascular endothelial growth factor-A and a disintegrin and metalloprotease family members 10 and 17.
    Lucitti JL; Mackey JK; Morrison JC; Haigh JJ; Adams RH; Faber JE
    Circ Res; 2012 Dec; 111(12):1539-50. PubMed ID: 22965144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloride intracellular channel-4 is a determinant of native collateral formation in skeletal muscle and brain.
    Chalothorn D; Zhang H; Smith JE; Edwards JC; Faber JE
    Circ Res; 2009 Jul; 105(1):89-98. PubMed ID: 19478202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and maturation of the native cerebral collateral circulation.
    Chalothorn D; Faber JE
    J Mol Cell Cardiol; 2010 Aug; 49(2):251-9. PubMed ID: 20346953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular endothelial growth factor and the collateral circulation: the story continues.
    Chilian WM; Pung YF
    Circ Res; 2008 Oct; 103(9):905-6. PubMed ID: 18948626
    [No Abstract]   [Full Text] [Related]  

  • 7. Wide genetic variation in the native pial collateral circulation is a major determinant of variation in severity of stroke.
    Zhang H; Prabhakar P; Sealock R; Faber JE
    J Cereb Blood Flow Metab; 2010 May; 30(5):923-34. PubMed ID: 20125182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse models of Alzheimer's disease cause rarefaction of pial collaterals and increased severity of ischemic stroke.
    Zhang H; Jin B; Faber JE
    Angiogenesis; 2019 May; 22(2):263-279. PubMed ID: 30519973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia induces de novo formation of cerebral collaterals and lessens the severity of ischemic stroke.
    Zhang H; Rzechorzek W; Aghajanian A; Faber JE
    J Cereb Blood Flow Metab; 2020 Sep; 40(9):1806-1822. PubMed ID: 32423327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variants of Rab GTPase-Effector Binding Protein-2 Cause Variation in the Collateral Circulation and Severity of Stroke.
    Lucitti JL; Sealock R; Buckley BK; Zhang H; Xiao L; Dudley AC; Faber JE
    Stroke; 2016 Dec; 47(12):3022-3031. PubMed ID: 27811335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collateral Vessels Have Unique Endothelial and Smooth Muscle Cell Phenotypes.
    Zhang H; Chalothorn D; Faber JE
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31344780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Placental growth factor deficiency is associated with impaired cerebral vascular development in mice.
    Luna RL; Kay VR; Rätsep MT; Khalaj K; Bidarimath M; Peterson N; Carmeliet P; Jin A; Croy BA
    Mol Hum Reprod; 2016 Feb; 22(2):130-42. PubMed ID: 26646502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De-novo collateral formation following acute myocardial infarction: Dependence on CCR2⁺ bone marrow cells.
    Zhang H; Faber JE
    J Mol Cell Cardiol; 2015 Oct; 87():4-16. PubMed ID: 26254180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myoblast-mediated gene therapy improves functional collateralization in chronic cerebral hypoperfusion.
    Hecht N; Marushima A; Nieminen M; Kremenetskaia I; von Degenfeld G; Woitzik J; Vajkoczy P
    Stroke; 2015 Jan; 46(1):203-11. PubMed ID: 25388423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vegfa signaling promotes zebrafish intestinal vasculature development through endothelial cell migration from the posterior cardinal vein.
    Koenig AL; Baltrunaite K; Bower NI; Rossi A; Stainier DY; Hogan BM; Sumanas S
    Dev Biol; 2016 Mar; 411(1):115-27. PubMed ID: 26769101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling.
    Heinolainen K; Karaman S; D'Amico G; Tammela T; Sormunen R; Eklund L; Alitalo K; Zarkada G
    Circ Res; 2017 Apr; 120(9):1414-1425. PubMed ID: 28298294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelial nitric oxide synthase deficiency causes collateral vessel rarefaction and impairs activation of a cell cycle gene network during arteriogenesis.
    Dai X; Faber JE
    Circ Res; 2010 Jun; 106(12):1870-81. PubMed ID: 20431061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased inspired oxygen stimulates de novo formation of coronary collaterals in adult heart.
    Aghajanian A; Zhang H; Buckley BK; Wittchen ES; Ma WY; Faber JE
    J Mol Cell Cardiol; 2021 Jan; 150():1-11. PubMed ID: 33038388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelial Cells Regulate Physiological Cardiomyocyte Growth via VEGFR2-Mediated Paracrine Signaling.
    Kivelä R; Hemanthakumar KA; Vaparanta K; Robciuc M; Izumiya Y; Kidoya H; Takakura N; Peng X; Sawyer DB; Elenius K; Walsh K; Alitalo K
    Circulation; 2019 May; 139(22):2570-2584. PubMed ID: 30922063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells.
    Harrington LS; Sainson RC; Williams CK; Taylor JM; Shi W; Li JL; Harris AL
    Microvasc Res; 2008 Mar; 75(2):144-54. PubMed ID: 17692341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.