These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26276953)

  • 1. A multiresolution approach to shear wave image reconstruction.
    Hollender P; Bottenus N; Trahey G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Aug; 62(8):1429-39. PubMed ID: 26276953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.
    Amador Carrascal C; Chen S; Urban MW; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):3-13. PubMed ID: 29283342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear wave elasticity imaging based on acoustic radiation force and optical detection.
    Cheng Y; Li R; Li S; Dunsby C; Eckersley RJ; Elson DS; Tang MX
    Ultrasound Med Biol; 2012 Sep; 38(9):1637-45. PubMed ID: 22749816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the effects of reflected waves in transient shear wave elastography.
    Deffieux T; Gennisson JL; Bercoff J; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2032-5. PubMed ID: 21989866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parameters affecting the resolution and accuracy of 2-D quantitative shear wave images.
    Rouze NC; Wang MH; Palmeri ML; Nightingale KR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1729-40. PubMed ID: 22899119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Travelling wave expansion: a model fitting approach to the inverse problem of elasticity reconstruction.
    Baghani A; Salcudean S; Honarvar M; Sahebjavaher RS; Rohling R; Sinkus R
    IEEE Trans Med Imaging; 2011 Aug; 30(8):1555-65. PubMed ID: 21813354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Local Phase Velocity-Based Imaging: Shear Wave Particle Velocity and Displacement Motion Study.
    Kijanka P; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar; 67(3):526-537. PubMed ID: 31634830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear wave arrival time estimates correlate with local speckle pattern.
    Mcaleavey SA; Osapoetra LO; Langdon J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2054-67. PubMed ID: 26670847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional sonoelastographic shear velocity imaging.
    Hoyt K; Castaneda B; Parker KJ
    Ultrasound Med Biol; 2008 Feb; 34(2):276-88. PubMed ID: 17935863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling shear waves through a viscoelastic medium induced by acoustic radiation force.
    Lee KH; Szajewski BA; Hah Z; Parker KJ; Maniatty AM
    Int J Numer Method Biomed Eng; 2012; 28(6-7):678-96. PubMed ID: 25364845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the Improvement in Shear Wave Speed Image Quality Using Multidimensional Directional Filters in the Presence of Reflection Artifacts.
    Lipman SL; Rouze NC; Palmeri ML; Nightingale KR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Aug; 63(8):1049-1063. PubMed ID: 28458448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Reconstruction Parameters for 2-D Comb-Push Ultrasound Shear Wave Elastography.
    Racedo J; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):254-263. PubMed ID: 30507530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving arrival time identification in transient elastography.
    Klein J; McLaughlin J; Renzi D
    Phys Med Biol; 2012 Apr; 57(8):2151-68. PubMed ID: 22452966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of rapid multi-focal-zone ARFI imaging.
    Rosenzweig S; Palmeri M; Nightingale K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Feb; 62(2):280-9. PubMed ID: 25643078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximum likelihood estimation of shear wave speed in transient elastography.
    Audière S; Angelini ED; Sandrin L; Charbit M
    IEEE Trans Med Imaging; 2014 Jun; 33(6):1338-49. PubMed ID: 24835213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-Point Frequency Shift Method for Shear Wave Attenuation Measurement.
    Kijanka P; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar; 67(3):483-496. PubMed ID: 31603777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the local shear modulus and viscosity using a transient finite-amplitude modulated radiation force.
    Giannoula A; Cobbold RS
    Ultrasonics; 2011 Apr; 51(3):340-51. PubMed ID: 21106214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography.
    Latorre-Ossa H; Gennisson JL; De Brosses E; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):833-9. PubMed ID: 22547295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of remote adaptive torsional shear waves with an octagonal phased array to enhance displacements and reduce variability of shear wave speeds: comparison with quasi-plane shear wavefronts.
    Ouared A; Montagnon E; Cloutier G
    Phys Med Biol; 2015 Oct; 60(20):8161-85. PubMed ID: 26439616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-Phase Transmit Focusing for Multiangle Compound Shear-Wave Elasticity Imaging.
    Yoon H; Aglyamov SR; Emelianov SY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Oct; 64(10):1439-1449. PubMed ID: 28708552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.