These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 26276955)
1. Frequency adaptation for enhanced radiation force amplitude in dynamic elastography. Ouared A; Montagnon E; Kazemirad S; Gaboury L; Robidoux A; Cloutier G IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Aug; 62(8):1453-66. PubMed ID: 26276955 [TBL] [Abstract][Full Text] [Related]
2. Improving Displacement Signal-to-Noise Ratio for Low-Signal Radiation Force Elasticity Imaging Using Bayesian Techniques. Dumont DM; Walsh KM; Byram BC Ultrasound Med Biol; 2016 Aug; 42(8):1986-97. PubMed ID: 27157861 [TBL] [Abstract][Full Text] [Related]
3. Evaluating the Improvement in Shear Wave Speed Image Quality Using Multidimensional Directional Filters in the Presence of Reflection Artifacts. Lipman SL; Rouze NC; Palmeri ML; Nightingale KR IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Aug; 63(8):1049-1063. PubMed ID: 28458448 [TBL] [Abstract][Full Text] [Related]
4. Optical tracking of superficial dynamics from an acoustic radiation force-induced excitation. Bouchard RR; Van Soest G; Trahey GE; Van Der Steen AF Ultrason Imaging; 2009 Jan; 31(1):17-30. PubMed ID: 19507680 [TBL] [Abstract][Full Text] [Related]
5. Generation of remote adaptive torsional shear waves with an octagonal phased array to enhance displacements and reduce variability of shear wave speeds: comparison with quasi-plane shear wavefronts. Ouared A; Montagnon E; Cloutier G Phys Med Biol; 2015 Oct; 60(20):8161-85. PubMed ID: 26439616 [TBL] [Abstract][Full Text] [Related]
6. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Nightingale K; Soo MS; Nightingale R; Trahey G Ultrasound Med Biol; 2002 Feb; 28(2):227-35. PubMed ID: 11937286 [TBL] [Abstract][Full Text] [Related]
7. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime. Lee J Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757 [TBL] [Abstract][Full Text] [Related]
8. Optical Quantification of Harmonic Acoustic Radiation Force Excitation in a Tissue-Mimicking Phantom. Suomi V; Edwards D; Cleveland R Ultrasound Med Biol; 2015 Dec; 41(12):3216-32. PubMed ID: 26330365 [TBL] [Abstract][Full Text] [Related]
9. A Frequency-Shift Method to Measure Shear-Wave Attenuation in Soft Tissues. Bernard S; Kazemirad S; Cloutier G IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Mar; 64(3):514-524. PubMed ID: 27913343 [TBL] [Abstract][Full Text] [Related]
10. Quantitative viscoelastic parameters measured by harmonic motion imaging. Vappou J; Maleke C; Konofagou EE Phys Med Biol; 2009 Jun; 54(11):3579-94. PubMed ID: 19454785 [TBL] [Abstract][Full Text] [Related]
11. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography. Zhu Y; Dong C; Yin Y; Chen X; Guo Y; Zheng Y; Shen Y; Wang T; Zhang X; Chen S Ultrasound Med Biol; 2015 Feb; 41(2):601-9. PubMed ID: 25542484 [TBL] [Abstract][Full Text] [Related]
12. A simulation technique for 3D MR-guided acoustic radiation force imaging. Payne A; de Bever J; Farrer A; Coats B; Parker DL; Christensen DA Med Phys; 2015 Feb; 42(2):674-84. PubMed ID: 25652481 [TBL] [Abstract][Full Text] [Related]
13. Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation. Chen J; Hou GY; Marquet F; Han Y; Camarena F; Konofagou E Phys Med Biol; 2015 Oct; 60(19):7499-512. PubMed ID: 26371501 [TBL] [Abstract][Full Text] [Related]
14. Modeling shear waves through a viscoelastic medium induced by acoustic radiation force. Lee KH; Szajewski BA; Hah Z; Parker KJ; Maniatty AM Int J Numer Method Biomed Eng; 2012; 28(6-7):678-96. PubMed ID: 25364845 [TBL] [Abstract][Full Text] [Related]
15. Analysis of rapid multi-focal-zone ARFI imaging. Rosenzweig S; Palmeri M; Nightingale K IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Feb; 62(2):280-9. PubMed ID: 25643078 [TBL] [Abstract][Full Text] [Related]
16. Vibro-magnetometry: theoretical aspects and simulations. Carneiro AO; Baffa O; Silva GT; Fatemi M IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1065-73. PubMed ID: 19473925 [TBL] [Abstract][Full Text] [Related]
17. Experimental validation of displacement underestimation in ARFI ultrasound. Czernuszewicz TJ; Streeter JE; Dayton PA; Gallippi CM Ultrason Imaging; 2013 Jul; 35(3):196-213. PubMed ID: 23858054 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the nonlinear elastic properties of soft tissues using the supersonic shear imaging (SSI) technique: inverse method, ex vivo and in vivo experiments. Jiang Y; Li GY; Qian LX; Hu XD; Liu D; Liang S; Cao Y Med Image Anal; 2015 Feb; 20(1):97-111. PubMed ID: 25476413 [TBL] [Abstract][Full Text] [Related]
19. Shear wave elasticity imaging based on acoustic radiation force and optical detection. Cheng Y; Li R; Li S; Dunsby C; Eckersley RJ; Elson DS; Tang MX Ultrasound Med Biol; 2012 Sep; 38(9):1637-45. PubMed ID: 22749816 [TBL] [Abstract][Full Text] [Related]
20. Design of a phased array for the generation of adaptive radiation force along a path surrounding a breast lesion for dynamic ultrasound elastography imaging. Ekeom D; Hadj Henni A; Cloutier G IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Mar; 60(3):552-61. PubMed ID: 23475920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]