These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 26277064)
41. The delivered dose: Applying particokinetics to in vitro investigations of nanoparticle internalization by macrophages. Ahmad Khanbeigi R; Kumar A; Sadouki F; Lorenz C; Forbes B; Dailey LA; Collins H J Control Release; 2012 Sep; 162(2):259-66. PubMed ID: 22824784 [TBL] [Abstract][Full Text] [Related]
42. Dynamic cell culture model of endothelial cells for simulating in vivo nanoparticle uptake. Park K J Control Release; 2015 Oct; 216():169. PubMed ID: 26398684 [No Abstract] [Full Text] [Related]
43. A method for evaluating nanoparticle transport through the blood-brain barrier in vitro. Guarnieri D; Muscetti O; Netti PA Methods Mol Biol; 2014; 1141():185-99. PubMed ID: 24567140 [TBL] [Abstract][Full Text] [Related]
44. Synthetic tumor networks for screening drug delivery systems. Prabhakarpandian B; Shen MC; Nichols JB; Garson CJ; Mills IR; Matar MM; Fewell JG; Pant K J Control Release; 2015 Mar; 201():49-55. PubMed ID: 25599856 [TBL] [Abstract][Full Text] [Related]
45. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Hadinoto K; Sundaresan A; Cheow WS Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):427-43. PubMed ID: 23872180 [TBL] [Abstract][Full Text] [Related]
46. The effect of shear flow on nanoparticle agglomeration and deposition in in vitro dynamic flow models. Grabinski C; Sharma M; Maurer E; Sulentic C; Mohan Sankaran R; Hussain S Nanotoxicology; 2016; 10(1):74-83. PubMed ID: 25961858 [TBL] [Abstract][Full Text] [Related]
47. Superparamagnetic hybrid micelles, based on iron oxide nanoparticles and well-defined diblock copolymers possessing beta-ketoester functionalities. Papaphilippou P; Loizou L; Popa NC; Han A; Vekas L; Odysseos A; Krasia-Christoforou T Biomacromolecules; 2009 Sep; 10(9):2662-71. PubMed ID: 19627141 [TBL] [Abstract][Full Text] [Related]
48. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density. Essa S; Rabanel JM; Hildgen P Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551 [TBL] [Abstract][Full Text] [Related]
50. Free paclitaxel loaded PEGylated-paclitaxel nanoparticles: preparation and comparison with other paclitaxel systems in vitro and in vivo. Lu J; Chuan X; Zhang H; Dai W; Wang X; Wang X; Zhang Q Int J Pharm; 2014 Aug; 471(1-2):525-35. PubMed ID: 24858391 [TBL] [Abstract][Full Text] [Related]
52. Dynamic in vivo imaging of dual-triggered microspheres for sustained release applications: synthesis, characterization and cytotoxicity study. Efthimiadou EK; Tapeinos C; Chatzipavlidis A; Boukos N; Fragogeorgi E; Palamaris L; Loudos G; Kordas G Int J Pharm; 2014 Jan; 461(1-2):54-63. PubMed ID: 24286923 [TBL] [Abstract][Full Text] [Related]
53. New stent surface materials: the impact of polymer-dependent interactions of human endothelial cells, smooth muscle cells, and platelets. Busch R; Strohbach A; Rethfeldt S; Walz S; Busch M; Petersen S; Felix S; Sternberg K Acta Biomater; 2014 Feb; 10(2):688-700. PubMed ID: 24148751 [TBL] [Abstract][Full Text] [Related]
54. Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles. Schimpel C; Teubl B; Absenger M; Meindl C; Fröhlich E; Leitinger G; Zimmer A; Roblegg E Mol Pharm; 2014 Mar; 11(3):808-18. PubMed ID: 24502507 [TBL] [Abstract][Full Text] [Related]
55. Multifactorial determinants that govern nanoparticle uptake by human endothelial cells under flow. Samuel SP; Jain N; O'Dowd F; Paul T; Kashanin D; Gerard VA; Gun'ko YK; Prina-Mello A; Volkov Y Int J Nanomedicine; 2012; 7():2943-56. PubMed ID: 22745555 [TBL] [Abstract][Full Text] [Related]
56. Uptake of ferromagnetic carbon-encapsulated metal nanoparticles in endothelial cells: influence of shear stress and endothelial activation. Jacobson M; Roth Z'graggen B; Graber SM; Schumacher CM; Stark WJ; Dumrese C; Mateos JM; Aemisegger C; Ziegler U; Urner M; Herrmann IK; Beck-Schimmer B Nanomedicine (Lond); 2015; 10(24):3537-46. PubMed ID: 26434758 [TBL] [Abstract][Full Text] [Related]
57. Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization. Ohno K; Mori C; Akashi T; Yoshida S; Tago Y; Tsujii Y; Tabata Y Biomacromolecules; 2013 Oct; 14(10):3453-62. PubMed ID: 23957585 [TBL] [Abstract][Full Text] [Related]
58. Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury. Papa S; Ferrari R; De Paola M; Rossi F; Mariani A; Caron I; Sammali E; Peviani M; Dell'Oro V; Colombo C; Morbidelli M; Forloni G; Perale G; Moscatelli D; Veglianese P J Control Release; 2014 Jan; 174():15-26. PubMed ID: 24225226 [TBL] [Abstract][Full Text] [Related]
59. Tumor tissue slice cultures as a platform for analyzing tissue-penetration and biological activities of nanoparticles. Merz L; Höbel S; Kallendrusch S; Ewe A; Bechmann I; Franke H; Merz F; Aigner A Eur J Pharm Biopharm; 2017 Mar; 112():45-50. PubMed ID: 27864052 [TBL] [Abstract][Full Text] [Related]
60. Shuttle-mediated nanoparticle transport across an in vitro brain endothelium under flow conditions. Falanga AP; Pitingolo G; Celentano M; Cosentino A; Melone P; Vecchione R; Guarnieri D; Netti PA Biotechnol Bioeng; 2017 May; 114(5):1087-1095. PubMed ID: 27861732 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]