These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 2627710)

  • 1. Prediction of the virulencies of some enveloped viruses from the structure of the cleavage recognition site of viral glycoprotein essential for infectivity. II. Deviation analysis.
    Kiho Y; Miyata K; Okada Y
    Cell Struct Funct; 1989 Dec; 14(6):721-30. PubMed ID: 2627710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the virulencies of some enveloped viruses from the structure of the cleavage recognition site of viral glycoproteins essential for infectivity. I. Calculation of interaction energy.
    Okada Y; Shima Y; Shimamoto T; Kusaka N; Kiho Y
    Cell Struct Funct; 1989 Dec; 14(6):707-19. PubMed ID: 2627709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of viral glycoprotein with trypsin and its relation to virulency. I. Initial step of binding.
    Shimamoto T; Shimamoto T; Okada Y; Yamada N; Miyata K; Kiho Y
    Cell Struct Funct; 1991 Feb; 16(1):31-8. PubMed ID: 2032307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viral glycoproteomes: technologies for characterization and outlook for vaccine design.
    Bagdonaite I; Vakhrushev SY; Joshi HJ; Wandall HH
    FEBS Lett; 2018 Dec; 592(23):3898-3920. PubMed ID: 29961944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Host cell proteases controlling virus pathogenicity.
    Klenk HD; Garten W
    Trends Microbiol; 1994 Feb; 2(2):39-43. PubMed ID: 8162439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maturation of HIV envelope glycoprotein precursors by cellular endoproteases.
    Moulard M; Decroly E
    Biochim Biophys Acta; 2000 Nov; 1469(3):121-32. PubMed ID: 11063880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of viral glycoprotein with trypsin and its relation to virulency. II. Comparison between bovine and Streptomyces griseus trypsins.
    Miyata K; Kiho Y; Hosaka Y
    Cell Struct Funct; 1991 Feb; 16(1):39-43. PubMed ID: 1851673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virus glycosylation: role in virulence and immune interactions.
    Vigerust DJ; Shepherd VL
    Trends Microbiol; 2007 May; 15(5):211-8. PubMed ID: 17398101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pseudotypic paradox.
    Závada J
    J Gen Virol; 1982 Nov; 63 (Pt 1)():15-24. PubMed ID: 6757385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural rearrangements in the membrane penetration protein of a non-enveloped virus.
    Dormitzer PR; Nason EB; Prasad BV; Harrison SC
    Nature; 2004 Aug; 430(7003):1053-8. PubMed ID: 15329727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processing of viral glycoproteins by the subtilisin-like endoprotease furin and its inhibition by specific peptidylchloroalkylketones.
    Garten W; Hallenberger S; Ortmann D; Schäfer W; Vey M; Angliker H; Shaw E; Klenk HD
    Biochimie; 1994; 76(3-4):217-25. PubMed ID: 7819326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic cleavage of a glycoprotein of respiratory syncytial virus.
    Spring SB; Tolpin MD
    Arch Virol; 1983; 76(4):359-63. PubMed ID: 6354136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of cellular proteases in viral pathogenicity.
    Choppin PW; Scheid A
    Trans Am Clin Climatol Assoc; 1979; 90():56-65. PubMed ID: 390827
    [No Abstract]   [Full Text] [Related]  

  • 14. Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus.
    Nagai Y; Klenk HD; Rott R
    Virology; 1976 Jul; 72(2):494-508. PubMed ID: 948870
    [No Abstract]   [Full Text] [Related]  

  • 15. Molecular mechanisms of virus spread and virion components as tools of virulence. A review.
    Rajcáni J
    Acta Microbiol Immunol Hung; 2003; 50(4):407-31. PubMed ID: 14750441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarity of influenza and vesicular stomatitis virus maturation in MDCK cells: lack of a requirement for glycosylation of viral glycoproteins.
    Roth MG; Fitzpatrick JP; Compans RW
    Proc Natl Acad Sci U S A; 1979 Dec; 76(12):6430-4. PubMed ID: 230510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary structure of the cleavage site associated with trypsin enhancement of rotavirus SA11 infectivity.
    López S; Arias CF; Bell JR; Strauss JH; Espejo RT
    Virology; 1985 Jul; 144(1):11-9. PubMed ID: 2998038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteolytic processing of the Ebola virus glycoprotein is not critical for Ebola virus replication in nonhuman primates.
    Neumann G; Geisbert TW; Ebihara H; Geisbert JB; Daddario-DiCaprio KM; Feldmann H; Kawaoka Y
    J Virol; 2007 Mar; 81(6):2995-8. PubMed ID: 17229700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serial passage of a street rabies virus in mouse neuroblastoma cells resulted in attenuation: potential role of the additional N-glycosylation of a viral glycoprotein in the reduced pathogenicity of street rabies virus.
    Yamada K; Park CH; Noguchi K; Kojima D; Kubo T; Komiya N; Matsumoto T; Mitui MT; Ahmed K; Morimoto K; Inoue S; Nishizono A
    Virus Res; 2012 Apr; 165(1):34-45. PubMed ID: 22248643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular processing of the human respiratory syncytial virus fusion glycoprotein: amino acid substitutions affecting folding, transport and cleavage.
    Anderson K; Stott EJ; Wertz GW
    J Gen Virol; 1992 May; 73 ( Pt 5)():1177-88. PubMed ID: 1375280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.