These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 26277149)

  • 1. An itinerant oscillator model with cage inertia for mesorheological granular experiments.
    Lasanta A; Puglisi A
    J Chem Phys; 2015 Aug; 143(6):064511. PubMed ID: 26277149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cages and anomalous diffusion in vibrated dense granular media.
    Scalliet C; Gnoli A; Puglisi A; Vulpiani A
    Phys Rev Lett; 2015 May; 114(19):198001. PubMed ID: 26024199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical Collective Memory in Fluidized Granular Materials.
    Plati A; Baldassarri A; Gnoli A; Gradenigo G; Puglisi A
    Phys Rev Lett; 2019 Jul; 123(3):038002. PubMed ID: 31386474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cage model of polar fluids: Finite cage inertia generalization.
    Coffey WT; Zarifakis M; Kalmykov YP; Titov SV; Dowling WJ; Titov AS
    J Chem Phys; 2017 Jul; 147(3):034509. PubMed ID: 28734284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistent correlation of constrained colloidal motion.
    Franosch T; Jeney S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031402. PubMed ID: 19391939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-anomalous diffusion processes in entangled solutions of wormlike surfactant micelles.
    Shukla A; Fuchs R; Rehage H
    Langmuir; 2006 Mar; 22(7):3000-6. PubMed ID: 16548549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treating inertia in passive microbead rheology.
    Indei T; Schieber JD; Córdoba A; Pilyugina E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021504. PubMed ID: 22463216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active Ornstein-Uhlenbeck model for self-propelled particles with inertia.
    Nguyen GHP; Wittmann R; Löwen H
    J Phys Condens Matter; 2021 Nov; 34(3):. PubMed ID: 34598179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term influence of fluid inertia on the diffusion of a Brownian particle.
    Pesce G; Volpe G; Volpe G; Sasso A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042309. PubMed ID: 25375496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Jittery velocity relaxation of an elastic sphere immersed in a viscous incompressible fluid.
    Felderhof BU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033001. PubMed ID: 24730931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanism of long-range diffusion in phospholipid membranes studied by quasielastic neutron scattering.
    Busch S; Smuda C; Pardo LC; Unruh T
    J Am Chem Soc; 2010 Mar; 132(10):3232-3. PubMed ID: 20163140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermediate regimes in granular Brownian motion: superdiffusion and subdiffusion.
    Bodrova A; Dubey AK; Puri S; Brilliantov N
    Phys Rev Lett; 2012 Oct; 109(17):178001. PubMed ID: 23215224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does ℏ play a role in multidimensional spectroscopy? Reduced hierarchy equations of motion approach to molecular vibrations.
    Sakurai A; Tanimura Y
    J Phys Chem A; 2011 Apr; 115(16):4009-22. PubMed ID: 21247206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure factors in granular experiments with homogeneous fluidization.
    Puglisi A; Gnoli A; Gradenigo G; Sarracino A; Villamaina D
    J Chem Phys; 2012 Jan; 136(1):014704. PubMed ID: 22239797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superdiffusion in quasi-two-dimensional Yukawa liquids.
    Ott T; Bonitz M; Donkó Z; Hartmann P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026409. PubMed ID: 18850948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of collective molecular reorientations on Brownian motion of colloids in nematic liquid crystal.
    Turiv T; Lazo I; Brodin A; Lev BI; Reiffenrath V; Nazarenko VG; Lavrentovich OD
    Science; 2013 Dec; 342(6164):1351-4. PubMed ID: 24337292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superdiffusion in two-dimensional Yukawa liquids.
    Liu B; Goree J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016405. PubMed ID: 17358266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode coupling theory analysis of electrolyte solutions: Time dependent diffusion, intermediate scattering function, and ion solvation dynamics.
    Roy S; Yashonath S; Bagchi B
    J Chem Phys; 2015 Mar; 142(12):124502. PubMed ID: 25833591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond the creeping viscous flow limit for lipid bilayer membranes: theory of single-particle microrheology, domain flicker spectroscopy, and long-time tails.
    Camley BA; Brown FL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021904. PubMed ID: 21929017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometry-induced superdiffusion in driven crowded systems.
    Bénichou O; Bodrova A; Chakraborty D; Illien P; Law A; Mejía-Monasterio C; Oshanin G; Voituriez R
    Phys Rev Lett; 2013 Dec; 111(26):260601. PubMed ID: 24483787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.