These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Collagen maturity and mineralization in mesenchymal stem cells cultured on the hydroxyapatite-based bone scaffold analyzed by ATR-FTIR spectroscopic imaging. Gieroba B; Przekora A; Kalisz G; Kazimierczak P; Song CL; Wojcik M; Ginalska G; Kazarian SG; Sroka-Bartnicka A Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111634. PubMed ID: 33321672 [TBL] [Abstract][Full Text] [Related]
6. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280 [TBL] [Abstract][Full Text] [Related]
7. Application of Raman Spectroscopic Imaging to Assess the Structural Changes at Cell-Scaffold Interface. Kalisz G; Przekora A; Kazimierczak P; Gieroba B; Jedrek M; Grudzinski W; Gruszecki WI; Ginalska G; Sroka-Bartnicka A Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33418952 [TBL] [Abstract][Full Text] [Related]
8. Characterization of collagen/hydroxyapatite composite sponges as a potential bone substitute. Sionkowska A; Kozłowska J Int J Biol Macromol; 2010 Nov; 47(4):483-7. PubMed ID: 20637799 [TBL] [Abstract][Full Text] [Related]
9. Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering - A mini review. Kuttappan S; Mathew D; Nair MB Int J Biol Macromol; 2016 Dec; 93(Pt B):1390-1401. PubMed ID: 27316767 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of collagen-hydroxyapatite/pectin composite. Wenpo F; Gaofeng L; Shuying F; Yuanming Q; Keyong T Int J Biol Macromol; 2015 Mar; 74():218-23. PubMed ID: 25485944 [TBL] [Abstract][Full Text] [Related]
11. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue. Taylor EA; Lloyd AA; Salazar-Lara C; Donnelly E Appl Spectrosc; 2017 Oct; 71(10):2404-2410. PubMed ID: 28485618 [TBL] [Abstract][Full Text] [Related]
12. Characterisation of bioactive and resorbable polylactide/Bioglass composites by FTIR spectroscopic imaging. Kazarian SG; Chan KL; Maquet V; Boccaccini AR Biomaterials; 2004 Aug; 25(18):3931-8. PubMed ID: 15046883 [TBL] [Abstract][Full Text] [Related]
13. Scaffold-free tissue-engineered construct-hydroxyapatite composites generated by an alternate soaking process: potential for repair of bone defects. Matsusaki M; Kadowaki K; Tateishi K; Higuchi C; Ando W; Hart DA; Tanaka Y; Take Y; Akashi M; Yoshikawa H; Nakamura N Tissue Eng Part A; 2009 Jan; 15(1):55-63. PubMed ID: 18673091 [TBL] [Abstract][Full Text] [Related]
14. Bone augmentation with autologous periosteal cells and two different calcium phosphate scaffolds under an occlusive titanium barrier: an experimental study in rabbits. Maréchal M; Eyckmans J; Schrooten J; Schepers E; Luyten FP; van Steenberghe D J Periodontol; 2008 May; 79(5):896-904. PubMed ID: 18454669 [TBL] [Abstract][Full Text] [Related]
15. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985 [TBL] [Abstract][Full Text] [Related]
16. Structural transformation of synthetic hydroxyapatite under simulated in vivo conditions studied with ATR-FTIR spectroscopic imaging. Sroka-Bartnicka A; Borkowski L; Ginalska G; Ślósarczyk A; Kazarian SG Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():155-161. PubMed ID: 27513683 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and in vitro biological evaluation of photopolymerisable hydroxyapatite hydrogel composites for bone regeneration. Killion JA; Geever LM; Devine DM; Higginbotham CL J Biomater Appl; 2014 Apr; 28(8):1274-83. PubMed ID: 24114559 [TBL] [Abstract][Full Text] [Related]
18. A Biomimetic Material with a High Bio-responsibility for Bone Reconstruction and Tissue Engineering. Chen X; Meng Y; Wang Y; Du C; Yang C J Biomater Sci Polym Ed; 2011; 22(1-3):153-63. PubMed ID: 20546681 [TBL] [Abstract][Full Text] [Related]
19. Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. Kong L; Gao Y; Cao W; Gong Y; Zhao N; Zhang X J Biomed Mater Res A; 2005 Nov; 75(2):275-82. PubMed ID: 16044404 [TBL] [Abstract][Full Text] [Related]
20. In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering. Laschke MW; Strohe A; Menger MD; Alini M; Eglin D Acta Biomater; 2010 Jun; 6(6):2020-7. PubMed ID: 20004748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]