These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26277716)

  • 1. Enhancing the water dispersibility of paclitaxel by complexation with hydrophobic peptides.
    Inada A; Oshima T; Baba Y
    Colloids Surf B Biointerfaces; 2015 Nov; 135():408-415. PubMed ID: 26277716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvements in the water dispersibility of paclitaxel by complexing with synthetic peptides derived from β-casein.
    Inada A; Sakurai Y; Oshima T; Baba Y; Matsuyama H
    Colloids Surf B Biointerfaces; 2018 Jul; 167():144-149. PubMed ID: 29635137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of highly water-dispersible complexes between coenzyme Q
    Inada A; Oue T; Yamashita S; Yamasaki M; Oshima T; Matsuyama H
    Eur J Pharm Sci; 2019 Aug; 136():104936. PubMed ID: 31129022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of water solubility of indomethacin by complexation with protein hydrolysate.
    Inada A; Oshima T; Takahashi H; Baba Y
    Int J Pharm; 2013 Sep; 453(2):587-93. PubMed ID: 23742973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced solubility of paclitaxel using water-soluble and biocompatible 2-methacryloyloxyethyl phosphorylcholine polymers.
    Konno T; Watanabe J; Ishihara K
    J Biomed Mater Res A; 2003 May; 65(2):209-14. PubMed ID: 12734814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced water dispersibility of coenzyme Q10 by complexation with albumin hydrolysate.
    Matsushita N; Oshima T; Takahashi H; Baba Y
    J Agric Food Chem; 2013 Jun; 61(25):5972-8. PubMed ID: 23731056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro.
    Liu J; Zhang L; Yang Z; Zhao X
    Int J Nanomedicine; 2011; 6():2143-53. PubMed ID: 22114478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical characterization of the interactions between doxorubicin and lipidic GM1 micelles with or without paclitaxel loading.
    Leonhard V; Alasino RV; Bianco ID; Garro AG; Heredia V; Beltramo DM
    Int J Nanomedicine; 2015; 10():3377-87. PubMed ID: 26005348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembled Tumor-Penetrating Peptide-Modified Poly(l-γ-glutamylglutamine)-Paclitaxel Nanoparticles Based on Hydrophobic Interaction for the Treatment of Glioblastoma.
    Yu J; Sun L; Zhou J; Gao L; Nan L; Zhao S; Peng T; Han L; Wang J; Lu W; Zhang L; Wang Y; Yan Z; Yu L
    Bioconjug Chem; 2017 Nov; 28(11):2823-2831. PubMed ID: 28968068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery.
    Soga O; van Nostrum CF; Fens M; Rijcken CJ; Schiffelers RM; Storm G; Hennink WE
    J Control Release; 2005 Mar; 103(2):341-53. PubMed ID: 15763618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymeric micelles with water-insoluble drug as hydrophobic moiety for drug delivery.
    Li G; Liu J; Pang Y; Wang R; Mao L; Yan D; Zhu X; Sun J
    Biomacromolecules; 2011 Jun; 12(6):2016-26. PubMed ID: 21568262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sialoganglioside Micelles for Enhanced Paclitaxel Solubility: In Vitro Characterization.
    Heredia V; Alasino RV; Leonhard V; Garro AG; Maggio B; Beltramo DM
    J Pharm Sci; 2016 Jan; 105(1):268-75. PubMed ID: 26852858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, Biological Evaluation and Low-Toxic Formulation Development of Glycosylated Paclitaxel Prodrugs.
    Mao Y; Zhang Y; Luo Z; Zhan R; Xu H; Chen W; Huang H
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30563132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles.
    Cho YW; Lee J; Lee SC; Huh KM; Park K
    J Control Release; 2004 Jun; 97(2):249-57. PubMed ID: 15196752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles Containing High Loads of Paclitaxel-Silicate Prodrugs: Formulation, Drug Release, and Anticancer Efficacy.
    Han J; Michel AR; Lee HS; Kalscheuer S; Wohl A; Hoye TR; McCormick AV; Panyam J; Macosko CW
    Mol Pharm; 2015 Dec; 12(12):4329-35. PubMed ID: 26505116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One platform comparison of solubilization potential of dendrimer with some solubilizing agents.
    Jain S; Kesharwani P; Tekade RK; Jain NK
    Drug Dev Ind Pharm; 2015 May; 41(5):722-7. PubMed ID: 24641446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of paclitaxel nanosuspension using novel emulsification method by combining high speed homogenizer and high pressure homogenization.
    Li Y; Zhao X; Zu Y; Zhang Y
    Int J Pharm; 2015 Jul; 490(1-2):324-33. PubMed ID: 26027492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paclitaxel dimers assembling nanomedicines for treatment of cervix carcinoma.
    Pei Q; Hu X; Liu S; Li Y; Xie Z; Jing X
    J Control Release; 2017 May; 254():23-33. PubMed ID: 28359677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dominant factors that determine the dissolution state of complexes between poorly water-soluble ingredients and casein hydrolysate.
    Inada A; Iwase T; Oshima T
    Colloids Surf B Biointerfaces; 2021 Dec; 208():112062. PubMed ID: 34492601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel cathepsin B-sensitive paclitaxel conjugate: Higher water solubility, better efficacy and lower toxicity.
    Liang L; Lin SW; Dai W; Lu JK; Yang TY; Xiang Y; Zhang Y; Li RT; Zhang Q
    J Control Release; 2012 Jun; 160(3):618-29. PubMed ID: 22410114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.