These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26277735)

  • 1. Dual-porosity poroviscoelasticity and quantitative hydromechanical characterization of the brain tissue with experimental hydrocephalus data.
    Mehrabian A; Abousleiman YN; Mapstone TB; El-Amm CA
    J Theor Biol; 2015 Nov; 384():19-32. PubMed ID: 26277735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General solutions to poroviscoelastic model of hydrocephalic human brain tissue.
    Mehrabian A; Abousleiman Y
    J Theor Biol; 2011 Dec; 291():105-18. PubMed ID: 21945606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic model of communicating hydrocephalus for surgery simulation.
    Clatz O; Litrico S; Delingette H; Paquis P; Ayache N
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):755-8. PubMed ID: 17405384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytic solution during an infusion test of the linear unsteady poroelastic equations in a spherically symmetric model of the brain.
    Wirth B; Sobey I
    Math Med Biol; 2009 Mar; 26(1):25-61. PubMed ID: 19050059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analysis of the interaction between interstitial plasma protein, interstitial flow, and fenestral filtration and its application to synovium.
    Levick JR
    Microvasc Res; 1994 Jan; 47(1):90-125. PubMed ID: 8022316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling poroelasticity and CFD for cerebrospinal fluid hydrodynamics.
    Tully B; Ventikos Y
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1644-51. PubMed ID: 19304478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards an acoustic model-based poroelastic imaging method: II. experimental investigation.
    Berry GP; Bamber JC; Miller NR; Barbone PE; Bush NL; Armstrong CG
    Ultrasound Med Biol; 2006 Dec; 32(12):1869-85. PubMed ID: 17169699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental feline hydrocephalus. The role of biomechanical changes in ventricular enlargement in cats.
    Shapiro K; Takei F; Fried A; Kohn I
    J Neurosurg; 1985 Jul; 63(1):82-7. PubMed ID: 4009279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in regional blood-flow and water content of brain and spinal cord in acute and chronic experimental hydrocephalus.
    Hochwald GM; Boal RD; Marlin AE; Kumar AJ
    Dev Med Child Neurol Suppl; 1975; (35):42-50. PubMed ID: 1060597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A poroelastic model of transcapillary flow in normal tissue.
    Speziale S; Tenti G; Sivaloganathan S
    Microvasc Res; 2008 Mar; 75(2):285-95. PubMed ID: 17707442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A poroviscoelastic description of fibrin gels.
    Noailly J; Van Oosterwyck H; Wilson W; Quinn TM; Ito K
    J Biomech; 2008 Nov; 41(15):3265-9. PubMed ID: 18930461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanics of hydrocephalus: a new theoretical model.
    Nagashima T; Tamaki N; Matsumoto S; Horwitz B; Seguchi Y
    Neurosurgery; 1987 Dec; 21(6):898-904. PubMed ID: 3437958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poroelastic analysis of interstitial fluid flow in a single lamellar trabecula subjected to cyclic loading.
    Kameo Y; Ootao Y; Ishihara M
    Biomech Model Mechanobiol; 2016 Apr; 15(2):361-70. PubMed ID: 26081726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Measurement of ventricular fluid pressure and brain tissue pressure in acute experimental communicating hydrocephalus (author's transl)].
    Kuchiwaki H; Hasuo M; Furuse M; Brock M; Dietz H
    No To Shinkei; 1978 Oct; 30(10):1109-13. PubMed ID: 718748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A homogenization approach for the effective drained viscoelastic properties of 2D porous media and an application for cortical bone.
    Nguyen ST; Vu MB; Vu MN; To QD
    J Mech Behav Biomed Mater; 2018 Feb; 78():134-142. PubMed ID: 29156352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear poroplastic model of ventricular dilation in hydrocephalus.
    Momjian S; Bichsel D
    J Neurosurg; 2008 Jul; 109(1):100-7. PubMed ID: 18590438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of non-linear permeability in a spherically symmetric model of hydrocephalus.
    Sobey I; Wirth B
    Math Med Biol; 2006 Dec; 23(4):339-61. PubMed ID: 16740628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-based estimation of ventricular deformation in the cat brain.
    Liu F; Lollis SS; Ji S; Paulsen KD; Hartov A; Roberts DW
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):308-15. PubMed ID: 20426126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating cerebral oedema using poroelasticity.
    Vardakis JC; Chou D; Tully BJ; Hung CC; Lee TH; Tsui PH; Ventikos Y
    Med Eng Phys; 2016 Jan; 38(1):48-57. PubMed ID: 26749338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the inclusion of swelling pressure in a tissue level poroviscoelastic model of cartilage deformation.
    Whiteley JP; Gaffney EA
    Math Med Biol; 2020 Sep; 37(3):389-428. PubMed ID: 32072158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.