These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26277735)

  • 21. An axisymmetric and fully 3D poroelastic model for the evolution of hydrocephalus.
    Wirth B; Sobey I
    Math Med Biol; 2006 Dec; 23(4):363-88. PubMed ID: 16740629
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Viscoelastic characterization of soft tissue from dynamic finite element models.
    Eskandari H; Salcudean SE; Rohling R; Ohayon J
    Phys Med Biol; 2008 Nov; 53(22):6569-90. PubMed ID: 18978443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical characterization of pharmaceutical solids: a comparison between rheological tests performed under static and dynamic porosity conditions.
    Bonacucina G; Cespi M; Misici-Falzi M; Palmieri GF
    Eur J Pharm Biopharm; 2007 Aug; 67(1):277-83. PubMed ID: 17276665
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An alternative Biot's formulation for dissipative porous media with skeleton deformation.
    Bécot FX; Jaouen L
    J Acoust Soc Am; 2013 Dec; 134(6):4801. PubMed ID: 25669292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.
    Nguyen VH; Naili S
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):861-76. PubMed ID: 25099567
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intraparenchymal drug delivery via positive-pressure infusion: experimental and modeling studies of poroelasticity in brain phantom gels.
    Chen ZJ; Broaddus WC; Viswanathan RR; Raghavan R; Gillies GT
    IEEE Trans Biomed Eng; 2002 Feb; 49(2):85-96. PubMed ID: 12066887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydraulic regulation of brain parenchymal volume.
    Winston KR; Breeze RE
    Neurol Res; 1991 Dec; 13(4):237-47. PubMed ID: 1687334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A fully dynamic multi-compartmental poroelastic system: Application to aqueductal stenosis.
    Chou D; Vardakis JC; Guo L; Tully BJ; Ventikos Y
    J Biomech; 2016 Jul; 49(11):2306-2312. PubMed ID: 26671218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clearance of edema fluid into cerebrospinal fluid. A mechanism for resolution of vasogenic brain edema.
    Reulen HJ; Tsuyumu M; Tack A; Fenske AR; Prioleau GR
    J Neurosurg; 1978 May; 48(5):754-64. PubMed ID: 641555
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unconfined compression of white matter.
    Cheng S; Bilston LE
    J Biomech; 2007; 40(1):117-24. PubMed ID: 16376349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.
    Bausch AR; Ziemann F; Boulbitch AA; Jacobson K; Sackmann E
    Biophys J; 1998 Oct; 75(4):2038-49. PubMed ID: 9746546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of negative dispersion by a nonlocal poroelastic theory.
    Chakraborty A
    J Acoust Soc Am; 2008 Jan; 123(1):56-67. PubMed ID: 18177138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A patient-specific, finite element model for noncommunicating hydrocephalus capable of large deformation.
    Lefever JA; Jaime García J; Smith JH
    J Biomech; 2013 May; 46(8):1447-53. PubMed ID: 23561703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Peristaltic propulsion of generalized Burgers' fluids through a non-uniform porous medium: a study of chyme dynamics through the diseased intestine.
    Tripathi D; Anwar Bég O
    Math Biosci; 2014 Feb; 248():67-77. PubMed ID: 24300568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The hydromechanics of hydrocephalus: steady-state solutions for cylindrical geometry.
    Kaczmarek M; Subramaniam RP; Neff SR
    Bull Math Biol; 1997 Mar; 59(2):295-323. PubMed ID: 9116602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cortex tissue relaxation and slow to medium load rates dependency can be captured by a two-phase flow poroelastic model.
    Urcun S; Rohan PY; Sciumè G; Bordas SPA
    J Mech Behav Biomed Mater; 2022 Feb; 126():104952. PubMed ID: 34906865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unconfined compression of hydrated viscoelastic tissues: a biphasic poroviscoelastic analysis.
    Mak AF
    Biorheology; 1986; 23(4):371-83. PubMed ID: 3779062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aging impact on brain biomechanics with applications to hydrocephalus.
    Wilkie KP; Drapaca CS; Sivaloganathan S
    Math Med Biol; 2012 Jun; 29(2):145-61. PubMed ID: 21393375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-pressure hydrocephalus: a novel analytical modeling approach.
    Fard PJ; Tajvidi MR; Gharibzadeh S
    J Theor Biol; 2007 Oct; 248(3):401-10. PubMed ID: 17655873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying a minimal rheological configuration: a tool for effective and efficient constitutive modeling of soft tissues.
    Jordan P; Kerdok AE; Howe RD; Socrate S
    J Biomech Eng; 2011 Apr; 133(4):041006. PubMed ID: 21428680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.